SignificanceMiddle East respiratory syndrome (MERS) is a zoonotic disease of global health concern, and dromedary camels are the source of human infection. Although Africa has the largest number of dromedary camels, and MERS-coronavirus (MERS-CoV) is endemic in these camels, locally acquired zoonotic MERS is not reported from Africa. However, little is known of the genetic or phenotypic characterization of MERS-CoV from Africa. In this study we characterize MERS-CoV from Burkina Faso, Nigeria, Morocco, and Ethiopia. We demonstrate viral genetic and phenotypic differences in viruses from West Africa, which may be relevant to differences in zoonotic potential, highlighting the need for studies of MERS-CoV at the animal–human interface.
Understanding Middle East respiratory syndrome coronavirus (MERS-CoV) transmission in dromedary camels is important, as they consitute a source of zoonotic infection to humans. To identify risk factors for MERS-CoV infection in camels bred in diverse conditions in Burkina Faso, Ethiopia and Morocco, blood samples and nasal swabs were sampled in February–March 2015. A relatively high MERS-CoV RNA rate was detected in Ethiopia (up to 15.7%; 95% confidence interval (CI): 8.2–28.0), followed by Burkina Faso (up to 12.2%; 95% CI: 7–20.4) and Morocco (up to 7.6%; 95% CI: 1.9–26.1). The RNA detection rate was higher in camels bred for milk or meat than in camels for transport (p = 0.01) as well as in younger camels (p = 0.06). High seropositivity rates (up to 100%; 95% CI: 100–100 and 99.4%; 95% CI: 95.4–99.9) were found in Morocco and Ethiopia, followed by Burkina Faso (up to 84.6%; 95% CI: 77.2–89.9). Seropositivity rates were higher in large/medium herds (≥51 camels) than small herds (p = 0.061), in camels raised for meat or milk than for transport (p = 0.01), and in nomadic or sedentary herds than in herds with a mix of these lifestyles (p < 0.005).
Equine coronaviruses (ECoV) are the only coronavirus known to infect horses. So far, data on ECoV infection in horses remain limited to the USA, France and Japan and its geographic distribution is not well understood. We carried out RT-PCR on 306 nasal and 315 rectal swabs and tested 243 sera for antibodies to detect coronavirus infections in apparently healthy horses in Saudi Arabia and Oman. We document evidence of infection with ECoV and HKU23 coronavirus by RT-PCR. There was no conclusive evidence of Middle East respiratory syndrome coronavirus infection in horses. Serological data suggest that lineage A betacoronavirus infections are commonly infecting horses in Saudi Arabia and Oman but antibody cross-reactivities between these viruses do not permit us to use serological data alone to identify which coronaviruses are causing these infections.
Genetic recombination has frequently been observed in coronaviruses. Here, we sequenced multiple complete genomes of dromedary camel coronavirus HKU23 (DcCoV-HKU23) from Nigeria, Morocco, and Ethiopia and identified several genomic positions indicative of cross-species virus recombination events among other betacoronaviruses of the subgenus Embecovirus (clade A beta-CoVs). Recombinant fragments of a rabbit coronavirus (RbCoV-HKU14) were identified at the hemagglutinin esterase gene position. Homolog fragments of a rodent CoV were also observed at 8.9-kDa open reading frame 4a at the 3= end of the spike gene. The patterns of recombination differed geographically across the African region, highlighting a mosaic structure of DcCoV-HKU23 genomes circulating in dromedaries. Our results highlighted active recombination of coronaviruses circulating in dromedaries and are also relevant to the emergence and evolution of other betacoronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV).IMPORTANCE Genetic recombination is often demonstrated in coronaviruses and can result in host range expansion or alteration in tissue tropism. Here, we showed interspecies events of recombination of an endemic dromedary camel coronavirus, HKU23, with other clade A betacoronaviruses. Our results supported the possibility that the zoonotic pathogen MERS-CoV, which also cocirculates in the same camel species, may have undergone similar recombination events facilitating its emergence or may do so in its future evolution.
BackgroundMiddle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic threat of global public health concern and dromedary camels are the source of zoonotic infection. Although MERS-CoV is enzootic in dromedaries in Africa as well as the Middle East, zoonotic disease has not been reported in Africa. Methods: In an abattoir in Kano, Nigeria, we tested nasal swabs from camels and investigated 261 humans with repeated occupational exposure to camels, many of whom also reported drinking fresh camel milk (n = 138) or urine (n = 94) or using camel urine for medicinal purposes (n = 96). Results: Weekly MERS-CoV RNA detection in January–February 2016 ranged from 0–8.4% of camels sampled. None of the abattoir workers with exposure to camels had evidence of neutralising antibody to MERS-CoV. Conclusion: There is a need for more studies to investigate whether or not zoonotic transmission of MERS-CoV does take place in Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.