Abstract-Texture is a possession that represents the facade and arrangement of an image. Image textures are intricate ocular patterns serene of entities or regions with sub-patterns with the kind of brightness, color, outline, dimension, and etc.This article proposes a new method for texture characterization by using statistical methods (TCUSM). In this proposed method (TCUSM) the features are obtained from energy, entropy, contrast and homogeneity. In an image, each one pixel is enclosed by 8 nearest pixels. The confined in turn for a pixel can be extracted from a neighbourhood of 3x3 pixels, which represents the fewest absolute unit. We used four vector angles 0, 45, 90,135 to carry out the experimentation with the query image. A total of 16 texture values are calculated per unit. Compute the feature vectors for the query image by calculating texture unit and the resultant value is compared with the image database. The retrieval result shows that the performance using Canberra distance has achieved higher performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.