The crystal structure of the triple mutant K53,56,120M of bovine pancreatic phospholipase A(2) has been redetermined using sulfur single-wavelength anomalous scattering. The synchrotron data were collected at lambda = 1.54 A and the crystal diffracted to 1.6 A resolution. The program SOLVE was used to locate the heavy atoms and to estimate the initial phases and the resulting map was then subjected to RESOLVE. The output of 455 non-H atoms, including 12 S atoms, one calcium ion and one chloride ion, were then subjected to ARP/wARP followed by REFMAC. With the improved phases, the automatic model building successfully built more than 85% of the 123 residues, excluding the N- and C-terminal residues. The final crystallographic R factor is 17.7% (R(free) = 21.7%). The refined model consists of 954 non-H protein atoms, 165 water O atoms, three 2-methyl-2,4-pentanediol (MPD) molecules, one calcium ion and one chloride ion. The present work is yet another example that shows the utility of single-wavelength anomalous scattering data for solving a protein structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.