How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high resolution ChIP-exo mapping to Isw2 to determine its sub-nucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes, and produced net directionality in moving nucleosomes either away or towards nucleosome-free regions at the 5′ and 3′ ends of genes. Isw2 possessed a sub-nucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.
SUMMARY A canonical nucleosome architecture around promoters establishes the context in which proteins regulate gene expression. Whether gene regulatory proteins that interact with nucleosomes are selective for individual nucleosome positions across the genome is not known. Here we examine in Saccharomyces several protein-nucleosome interactions, including those that 1) bind histones (Bdf1/SWR1 and Srm1), 2) bind specific DNA sequences (Rap1 and Reb1), and 3) potentially collide with nucleosomes during transcription (RNA polymerase II). We find that the Bdf1/SWR1 complex forms a di-nucleosome complex that is selective for the +1 and +2 nucleosomes of active genes. Rap1 selectively binds to its cognate site on the rotationally exposed first and second helical turn of DNA inside either border of the −1 nucleosome, whereas Reb1 is selective for a single NFR-proximal border of the −1 nucleosome. We find that a transcribing RNA polymerase creates a delocalized state of resident nucleosomes. These findings suggest that nucleosomes around promoter regions have position-specific functions, and that some gene regulators have position-specific nucleosomal interactions.
Spiroplasma sp. strain GNAT3597T was isolated from the biting midge genus Atrichopogon (Diptera: Ceratopogonidae). It was serologically distinct from other Spiroplasma species, groups or subgroups. Dark-field microscopy of the cells revealed the classical helical shape and subsequent transmission electron microscopy revealed cells surrounded by only a cell membrane (i.e. lacking a cell wall). Growth of strain GNAT3597T occurred in M1D medium at 30 °C. Strain GNAT3597T catabolized both glucose and arginine, but did not hydrolyse urea. The DNA G+C content of strain GNAT3597T was 29±1 mol%. Only one strain, SMCAT (Spiroplasma mirum), is serologically related to strain GNAT3597T, although the relationship is weak (positive reaction to only a 1 : 80 dilution). It is therefore proposed that strain GNAT3597T (=ATCC BAA-520T=NBRC 100390T) represents a novel species, Spiroplasma atrichopogonis sp. nov. (class Mollicutes: order Entomoplasmatales: family Spiroplasmataceae).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.