Black shales are integral parts of most foreland-basin deposits and, because they typically reflect maximum basin subsidence, their distributions serve as proxies for the extent of foreland-basin development. In the United States Appalachian area, the distribution of Middle–Upper Ordovician black shales suggests that the Taconian Orogeny proceeded from south to north along the eastern Laurentian margin and that Taconian tectophases were mediated by convergence at continental promontories. In the Late Ordovician Taconic tectophase, changes in the distribution of the Martinsburg and Utica black shales support a reversal of subduction polarity that effected the reactivation of basement structures and basin migration sufficient to yoke the Appalachian foreland basin with adjacent intracratonic basins. Shale distribution suggests that early Chatfieldian (late Sandbian–early Katian), east-verging subduction early in the tectophase generated a cratonic extensional regime with a narrow foreland basin that developed along reactivated Iapetan basement structures. Abruptly, in late Chatfieldian–early Edenian (early Katian) time, westwards migration of basinal Utica black shales and an underlying unconformity suggests change to a compressional regime and westwards subduction vergence. The coincidence of changes in basin shape and migration with the shifts in subduction polarity suggests a causal relationship.
A 3 ton (2.7 metric tonnes [t]), granitoid lonestone with Appalachian provenance was found in situ in offshore Devonian black shale in northeastern Kentucky, United States, and is denoted herein as the Robinson boulder, or lonestone, after its discoverer, Michael J. Robinson. This large boulder appears to have been displaced nearly 500 km from its source on the opposite margin of the Acadian/Neoacadian Appalachian foreland basin. While previous identifications of possible lonestones have been attributed to Pleistocene glacial events, scrutiny of this lonestone’s origin suggests that the boulder, which was embedded in the Upper Devonian Cleveland Shale Member of the Ohio Shale in northeastern Kentucky, is most likely a Devonian ice-rafted glacial dropstone. Notably, palynologic correlation with reported glacial diamictites elsewhere in the basin indicates such a source. Together, the dropstone and diamictites, separated by ~500 km, provide evidence for alpine glaciation in the ancient Acadian/Neoacadian orogen and for tidewater glaciers in the adjacent, eastern margin of the foreland basin. The latest Devonian marine transgression and Neoacadian foreland subsidence are interpreted to have been associated with tidewater glacial connections to the open sea. Importantly, the existence of this dropstone and its likely glacial precursor events require new considerations about contemporary black-shale sedimentation and the influence of tectonics on the delivery of glacial sediments to foreland basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.