As the main constituent of planetary cores, pure iron phase diagram under high pressure and temperature is of fundamental importance in geophysics and planetary science. However, previously reported iron-melting curves show large discrepancies (up to 1000 K at the Earth's core-mantle boundary, 136 GPa), resulting in persisting high uncertainties on the solid-liquid phase boundary. Here we unambiguously show that the observed differences commonly attributed to the nature of the used melting diagnostic are due to a carbon contamination of the sample as well as pressure overestimation at high temperature. The high melting temperature of pure iron under core-mantle boundary (4250 ± 250 K), here determined by X-ray absorption experiments at the Fe K-edge, indicates that volatile light elements such as sulfur, carbon, or hydrogen are required to lower the crystallization temperature of the Earth's liquid outer core in order to prevent extended melting of the surrounding silicate mantle.Plain Language Summary Iron is the main constituent of planetary cores; however, there are still large controversies regarding its melting temperature and phase diagram under planetary interior conditions. The present study reconciles different experimental approaches using laser-heated diamond anvil cell with different in situ X-ray diagnostics (absorption, diffraction, and Mossbauer spectroscopy). The main reason of discrepancies (over 1000 K at core-mantle boundary conditions) is attributed to carbon contamination from the diamond anvils and metrology issues related to thermal pressure overestimation. A high-melting temperature for iron at core-mantle boundary pressure would imply the presence of volatile elements in the liquid outer core, such as sulfur, carbon, or hydrogen, in order to lower its crystallization temperature and avoid extended melting of the surrounding silicate mantle.
2 I. Prencipe et al.Abstract A number of laser facilities coming online all over the world promise the capability of high-power laser experiments with shot repetition rates between 1 and 10 Hz. Target availability and technical issues related to the interaction environment could become a bottleneck for the exploitation of such facilities. In this paper, we report on target needs for three different classes of experiments: dynamic compression physics, electron transport and isochoric heating, and laser-driven particle and radiation sources. We also review some of the most challenging issues in target fabrication and high repetition rate operation. Finally, we discuss current target supply strategies and future perspectives to establish a sustainable target provision infrastructure for advanced laser facilities.
Precise knowledge of the melting temperatures of iron, nickel, and their alloys at pressures of the deep Earth would allow us to better constrain the parameters used for the Earth's heat budget and dynamics. However, melting curves of transition metals at pressures approaching 100 GPa and above are still controversial. To address this issue, we report new data on the melting temperature of nickel in a laser‐heated diamond anvil cell up to 100 GPa obtained by X‐ray absorption spectroscopy (XAS), a technique rarely used at such conditions. We couple this for the first time to ex situ analysis of the sample, providing a further validation of the melting criterion adopted here. Finally, a Simon‐Glatzel fit to the melting data obtained in this work, combined with those obtained in the most recent X‐ray diffraction experiments, gives TM(K)=1727×[]PM17±3+112.5±0.1, defining the most up‐to‐date X‐ray‐determined melting curve for Ni. This result confirms that Ni could be ignored in the discussion on melting properties and thermal profile of the Earth's core, as it should affect the Fe melting point by only 10–20 K at 90 GPa.
The structural stability of fcc Ni over a very large pressure range offers a unique opportunity to experimentally investigate how magnetism is modified by simple compression. K-edge x-ray magnetic circular dichroism (XMCD) shows that fcc Ni is ferromagnetic up to 200 GPa, contradicting recent predictions of an abrupt transition to a paramagnetic state at 160 GPa. Density functional theory calculations point out that the pressure evolution of the K-edge XMCD closely follows that of the p projected orbital moment rather than that of the total spin moment. The disappearance of magnetism in Ni is predicted to occur above 400 GPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.