The article deals with the influence of reversible excitation energy transfer on the fluorescence decay in systems with random distribution of molecules. On the basis of a hopping model, we have obtained an expression for the Laplace transform of the decay function and an expression for the average decay time. The case of dipole-dipole interaction is discussed in detail.
A formula for the donor photoluminescence decay time in its dependence on the concentrations of donor D and acceptor A has been derived from equations for the non-radiative excitation energy transfer between randomly distributed donor and acceptor molecules within a nonactive medium. In the limit [D]/[A] → 0 the formula becomes identical with that of Galanin [7], while in the absence of concentration quenching the fluorescence decay time does not depend on the concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.