Mass mortality events have led to a collapse of the sponge fauna of Lake Baikal. We describe a new Brown Rot Syndrome affecting the endemic species Lubomirskia baicalensis. The main symptoms are the appearance of brown patches at the sponge surface, necrosis, and cyanobacterial fouling. 16S rRNA gene sequencing was used to characterize the bacterial community of healthy versus diseased sponges, in order to identify putative pathogens. The relative abundance of 89 eubacterial OTUs out of 340 detected has significantly changed between healthy and diseased groups. This can be explained by the depletion of host-specific prokaryotes and by the appearance and proliferation of disease-specific OTUs. In diseased sponges, the most represented OTUs belong to the families Oscillatoriaceae, Cytophagaceae, Flavobacteriaceae, Chitinophagaceae, Sphingobacteriaceae, Burkholderiaceae, Rhodobacteraceae, Comamonadaceae, Oxalobacteraceae, and Xanthomonadaceae. Although these families may contain pathogenic agents, the primary causes of changes in the sponge bacterial community and their relationship with Brown Rot Syndrome remain unclear. A better understanding of this ecological crisis will thus require a more integrative approach.
At present, approximately 187 genera and over 1300 species of Microsporidia have been described, among which almost half infect aquatic species and approximately 50 genera potentially infect aquatic arthropods. Lake Baikal is the deepest and one of the oldest lakes in the world, and it has a rich endemic fauna with a predominance of arthropods. Among the arthropods living in this lake, amphipods (Crustacea) are the most dominant group and are represented by more than 350 endemic species. Baikalian amphipods inhabit almost all depths and all types of substrates. The age and geographical isolation of this group creates excellent opportunities for studying the diversity, evolution and genetics of host-parasite relationships. However, despite more than 150 years of study, data investigating the microsporidia of Lake Baikal remain incomplete. In this study, we used molecular genetic analyses to detect microsporidia in the hemolymph of several endemic species of amphipods from Lake Baikal. We provide the first evidence that microsporidian species belonging to three genera (Microsporidium, Dictyocoela and Nosema) are present in the hemolymph of Baikalian endemic amphipods. In the hemolymph of Eulimnogammarus verrucosus, we detected SSU rDNA of microsporidia belonging to the genus Nozema. In the hemolymph of Pallasea cancellous, we found the DNA of Microsporidium sp. similar to that in other Baikalian endemic amphipods; Dictyocoela sp. was found in the hemolymph of Eulimnogammarus marituji and Acanthogammarus lappaceus longispinus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.