Using density functional theory calculations, we studied structural, electronic and adsorption properties of CO and H 2 adsorption on the Pt-doped (ZnO) 12 nanoclusters. The more suitable position for the Pt atom is its lateral doping on the nanocluster surface. The lower energy gap for the Pt-doped (ZnO) 12 nanoclusters denotes that their conductivity is higher in comparison with the bare nanocluster. The results showed quite a reasonable increase in CO and H 2 gas molecules adsorption energies on the nanoclusters compared with the pristine (ZnO) 12 due to Pt doping. The sensitivity of the electronic and adsorption properties to the number of molecules was calculated as well. Upon CO adsorption on the Pt-doped (ZnO) 12 nanoclusters energy, it is better when no more than two molecules can be attached to one Pt atom, while H 2 adsorption provides at least three hydrogen molecules on Pt atom. Also, changes in electronic spectra of nanoclusters under the influence of adsorbed CO and H 2 molecules imply a decline in conductivity in such systems. These investigations proved that the Pt-doped (ZnO) 12 nanoclusters can be proposed as an approachable candidate in gas sensors for detecting CO and H 2 gas. Also, the calculation results of H 2 adsorption on Pt-doped (ZnO) 12 nanoclusters can help in consideration of the possibility of hydrogen storage media creation.
Density functional theory studies of the structural and electronic properties of nanoclusters (ZnO)n (n = 34, 60) in different geometric configurations were conducted. For each cluster, an optimization (relaxation) of structure geometry was performed, and the basic properties of the band structure were investigated. It was established that for the (ZnO)34 nanoclusters, the most stable are fullerene-like hollow structures that satisfy the rule of six isolated quadrangles. For the (ZnO)60 nanoclusters, different types of isomers, including hollow structures and sodalite-like structures composed from (ZnO)12 nanoclusters, were investigated. It was determined that the most energetically favorable structure was sodalite-type structure composed of seven (ZnO)12 clusters with common quadrangle edges.
CO, CO 2). Встановлено характер газосенсорних властивостей нанопорошкових металооксидів (адсорбційна здатність, швидкодія, чутливість, селективність) та вибрано конструкцію і оптимальні матеріали для побудови реєструючої багатокомпонентної матриці. Встановлено дієздатність побудованої газосенсорної системи для розпізнавання і аналізу газів та їх сумішей. Розроблена газосенсорна система дає змогу детектувати не тільки окремі газові компоненти, але і їх суміші з високою чутливістю і селективністю, що забезпечує можливість вийти на сучасний рівень формування газосенсорних систем з покращеними експлуатаційними характеристиками. К л ю ч о в і с л о в а: металооксидні нанопорошки, люмінесценція, газові сенсори.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.