The effect of diet composition on diurnal changes in glycogen zonation patterns in rat liver was investigated in individually-caged male Sprague-Dawley rats adapted to the 2 + 22 controlled feeding and lighting schedule and to diets containing 30% casein/55% carbohydrates, 60% casein/25% carbohydrates, or 9.0% casein (30 rats/dietary group). Three rats from each dietary group were killed at the following times relative to the onset of feeding (0 min):--60, --30, 0, 15, 30, 45, 60, 90, 120, and 180 min. Glycogen in cryostat sections from the median and right lateral lobes of the liver was fixed and stained by standard techniques. The optical density of glycogen at points along the path between the central and portal veins of a given lobule was determined, and lobular glycogen gradients of replicate animals were integrated to form a composite lobular glycogen distribution profile. In the period from--60 to 0 min, liver glycogen levels were similar for rats on any of the diets, and the glycogen concentration was similar in periportal (P), midlobular (M), and centrilobular (C) hepatocytes. During the 0- to 45-min period, diet-related glycogen depletion occurred (90 > 60 > 30% casein) by asymmetrical glycogen loss (P > M > C hepatocytes) from the liver lobules. Similar food intake curves occurred for all diets. During the 45- to 180-min period, asymmetrical glycogen accumulation began in lobular parenchymal cells (P > M > C hepatocytes), and rate of accumulation was related to dietary to dietary composition (30 > 60 > 90% casein). The differential responses of parenchymal cells within liver lobules to physiological stimuli resulted in glycogen distribution changes that were rapid and of large magnitude. Our results are consistent with the hypothesis that periportal and midlobular hepatocytes are more metabolically responsive and active than centrilobular hepatocytes
The induction and decay of ornithine decarboxylase (ODC) by insulin and asparagine in cultures of H4-II-EC3 (H35) hepatoma cells was studied in a modified Waymouth medium in the presence of fetal bovine serum (FBS) and in serum-free media. The insulin response was enhanced by the presence of asparagine although the effect of asparagine was not so much on the initial increase as it was on a slowing of the decline after the maximum was reached at 6 to 8 h after the supplements were added together with fresh medium. In all cases the initial ODC activity was zero at zero time for addition of media and supplements, and, after reaching the maximum, activity declined to near zero by 24 h. Fetal bovine serum gave induction that followed a similar time course but was inferior to the combination of insulin plus asparagine and, in fact, FBS inhibited the latter response. Putrescine (the product formed from ornithine by ODC), at 10(-5) M, markedly inhibited the induction of ODC by insulin or FBS, but the inhibition was less when asparagine was present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.