This paper reports the performance of alizarin based SnO 2 dye-sensitized solar cells. A novel template assisted method has been applied for the preparation of tin oxide nanoparticles. For the rst time, onion (Allium cepa) was used as a template for the synthesis of tin oxide nanostructures at different pH values. Tin oxide nanostructures were used for the photoanode preparation. A sandwich cell was prepared by using the dye soaked SnO 2 lm as a photoanode and platinum as a counter electrode. The structural, morphological and optical properties of the nanoparticles were studied using powder X-ray diffraction (XRD), Scanning Electron microscope (SEM), Photoluminescence (PL), Attenuated Total Re ectance (ATR) spectra and UV-visible spectroscopic techniques. Current-voltage (I-V) characteristics have been measured using electrochemical workstation under the presence of solar illumination. Characteristic parameters of the fabricated cell were determined on the basis of the measured I-V curves.
In this present work, zinc - tin - vanadium oxide (ZTVO) nanocomposite was prepared using hydrothermal route and was subjected to calcination at 600 0 C. The sample was systematically characterized by Powder X-ray Diffractometer (XRD), Attenuated Total Reflectance (ATR), Field Emission Scanning electron Microscope (FE-SEM), Transmission Electron Microscope (TEM) and Ultraviolet- Diffuse Reflectance Spectroscopic techniques. From the investigations, it is observed that this composite possess the combination of both individual and binary phases. The elongated nanostructures obtained due to the binary phases and spherical shaped nanostructures obtained due to the individual phase were observed from the FE-SEM image. The formation of the nanocomposite has further been confirmed from TEM and HRTEM images. ZTVO nanocomposite possess large surface area of 167.3 m2/g and pore size value around 11 nm. Also, the band gap of the material has been found to be 1.97 eV. Dye-sensitized solar cell (DSSC) has been fabricated using this ZTVO nanocomposite as the photoanode and betalain dye extracted from beetroot (Beta vulgaris) as the natural dye. This simple protocol was formulated at a low cost for the first time for DSSC fabrication and it has attained the efficiency of 3.41%. This better efficiency of ZTVO might be due to larger surface area, presence of pores in addition to smaller band gap.
This paper reports the performance of alizarin based SnO2 dye-sensitized solar cells. A novel template assisted method has been applied for the preparation of tin oxide nanoparticles. For the first time, onion (Allium cepa) was used as a template for the synthesis of tin oxide nanostructures at different pH values. Tin oxide nanostructures were used for the photoanode preparation. A sandwich cell was prepared by using the dye soaked SnO2 film as a photoanode and platinum as a counter electrode. The structural, morphological and optical properties of the nanoparticles were studied using powder X-ray diffraction (XRD), Scanning Electron microscope (SEM), Photoluminescence (PL), Attenuated Total Reflectance (ATR) spectra and UV-visible spectroscopic techniques. Current-voltage (I-V) characteristics have been measured using electrochemical workstation under the presence of solar illumination. Characteristic parameters of the fabricated cell were determined on the basis of the measured I-V curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.