This study aims to investigate the characteristic features of cloud base height (CBH) over Thiruvananthapuram during different seasons. CBH data were used for the present work derived from the Vaisala Laser Ceilometer, CL31 (VLC) installed at the campus of the Centre for Earth Science Studies, Akkulam (8.29 • N, 76.59 • E, 15 m above sea level). The VLC was in operation from the second week of July 2006 onwards. From the study, we found that CBH shows distinct diurnal and seasonal variations during all the seasons (except on rainy days). The diurnal variation for low-level clouds was different from that for the mid-level clouds. A cloud-free layer is evident in the region between 2.5 and 4 km. This cloud-free zone is more prominent during the southwest monsoon period compared to other seasons. Moreover, the monthly variations of cloud frequency and CBH were also described in addition to the different periodicities in cloud frequency. The periodicities found in the cloud frequency were 8 days and 30 days and these are significant at the 5% level. Thermodynamic parameters from the radiosonde were also related to the cloud frequency for various seasons and they were in good agreement.
In the present study, we investigate the phenomenon of transition of a thermoacoustic system involving two-phase flow, from aperiodic oscillations to limit cycle oscillations. Experiments were performed in a laboratory scale model of a spray combustor. A needle spray injector is used to generate a droplet spray having one dimensional velocity field. This simplified design of the injector helps in keeping away the geometric complexities involved in the real spray atomizers. We investigate the stability of the spray combustor in response to the variation of the flame location inside the combustor. Equivalence ratio is maintained constant throughout the experiment. The dynamics of the system is captured by measuring the unsteady pressure fluctuations present in the system. As the flame location is gradually varied, self-excited high amplitude acoustic oscillations are observed in the combustor. We observe the transition of the system behaviour from low amplitude aperiodic oscillations to large amplitude limit cycle oscillations occurring through intermittency. This intermittent state mainly consists of a sequence of high-amplitude periodic bursts separated by low amplitude aperiodic regions. Moreover, the experimental results highlight that during intermittency, the maximum amplitude of bursts oscillations, near to the onset of intermittency, is as much as three times higher than the maximum amplitude of the limit cycle oscillations. These high amplitude intermittent loads can have stronger adverse effects on the structural properties of the engine than the low amplitude cyclic loading caused by the sustained limit cycle oscillations. Evolution of the three different dynamical states of the spray combustion system (viz. stable, intermittency and limit cycle) are studied in three-dimensional phase space by using a phase space reconstruction tool from the dynamical system theory. We report the first experimental observation of type-II intermittency in a spray combustion system. The statistical distributions of the length of aperiodic (turbulent) phase with respect to the control parameter, first return map and recurrence plot techniques are employed to confirm the type of intermittency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.