57Fe transmission and conversion electron Mössbauer spectroscopy as well as XRD were used to study the effect of swift heavy ion irradiation on stress-annealed FINEMET samples with a composition of Fe73.5Si13.5Nb3B9Cu1. The XRD of the samples indicated changes neither in the crystal structure nor in the texture of irradiated ribbons as compared to those of non-irradiated ones. However, changes in the magnetic anisotropy both in the bulk as well as at the surface of the FINEMET alloy ribbons irradiated by 160 MeV 132Xe ions with a fluence of 1013 ion cm−2 were revealed via the decrease in relative areas of the second and fifth lines of the magnetic sextets in the corresponding Mössbauer spectra. The irradiation-induced change in the magnetic anisotropy in the bulk was found to be similar or somewhat higher than that at the surface. The results are discussed in terms of the defects produced by irradiation and corresponding changes in the orientation of spins depending on the direction of the stress generated around these defects.
Abstract57Fe conversion electron Mössbauer (CEM) spectroscopy, SEM and magnetization measurements were used to study the effect of swift heavy ion irradiation on metallic 57Fe (10 nm) thin layer vacuum deposited onto SiO2/Si. About 85% of the total iron content of the surface layer detected by CEM was present as metallic, crystalline alpha iron before the irradiation, while upon irradiation with 160 MeV Xe ions, with a fluence of 5 × 1013 ion cm−2, ~ 21% was converted to amorphous iron and ~ 47% to silicon-containing iron oxide phases. The presence of pure iron in the amorphous state was evidenced by CEM in agreement with magnetization measurements. Temperature dependence of CEM measurements and the FC/ZFC curves of the irradiated deposit indicated superparamagnetic nature of the iron-silicon-oxide phases. The results are discussed in terms of the thermal spike model for the formation of the amorphous iron phase that can be essential for the formation of silicon-iron-oxides.
Graphical abstract
Low-alloy 42CrMo4 steels were studied by 57Fe Mössbauer spectroscopy (MS), X-ray diffractometry (XRD), and Energy Dispersive X-ray Spectroscopy (EDS) measurements. The investigations were performed on metallographic samples, which were subjected to a series of successive grinding and polishing with a progressively finer grit. Conversion X-ray Mössbauer spectroscopy (CXMS) was used to determine the occurrence of austenite in steel samples. It is a unique method detecting the austenite content very sensitively. Six samples with different surface preparation were investigated, starting with 4.8% of austenite on an as-cut sample, and a large decrease in the retained austenite to 2.6% was observed after the first grinding of a hardened cut sample. Additionally, an unexpectedly large decrease in the austenite content to 2.3% was found due to the final polishing. A second time applied successive grinding and polishing of all samples resulted in identical austenite content determined by CXMS of approx. 5%, which proved the applicability of the CXMS method. Generally, the result calls attention to the importance of preparation of metallurgical samples by grinding and polishing where the results can vary significantly on the level of surface processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.