The constitutive endothelial cell nitric oxide synthase (NOS) importantly regulates vascular homeostasis. To gain understanding of this enzyme, a pEF BOS cDNA library of 5 X 105 clones was prepared from bovine aortic endothelial cells (BAEC) and screened with a 2.8-kb cDNA BamHI fragment of rat brain NOS. Clone pBOS13 was found to express NO synthase activity when transfected into COS-7 cells. Sequence analysis revealed sequences compatible with binding domains for calcium/calmodulin, flavin mononucleotide, flavin adenine nucleotide and NADPH. The deduced amino acid sequence revealed a protein with a relative mol mass of 133,286, which is 58% homologous to the rat cerebellar NOS and 51% homologous to the mouse macrophage NOS. The amino-terminal portion of the protein exhibits several characteristics peculiar to the endothelial cell NOS. These include a proline-rich region and several potential sites for proline-directed phosphorylation as well as a potential substrate site for acyl transferase. Northern hybridization to mRNA from cultured BAEC revealed an abundant 4.8-kb message, which was not increased by coincubation with tumor necrosis factor a, but was markedly increased by exposure to shear stress for 24 h. The unique features of the endothelial cell NO synthase, particularly in the amino terminal portion of the molecule, may provide for novel regulatory influences of enzyme activity and localization. (J.
Shear stress enhances expression of Ca(2+)-calmodulin-sensitive endothelial cell nitric oxide synthase (ecNOS) mRNA and protein in bovine aortic endothelial cells (BAEC). The present studies were performed to investigate mechanisms responsible for regulation of ecNOS mRNA expression by shear stress and to determine if this induction of ecNOS mRNA is accompanied by an enhanced nitric oxide (NO) production. Shear stresses of 15 dyn/cm2 for 3-24 h resulted in a two- to threefold increase of ecNOS mRNA content quantified by Northern analysis in BAEC. Shear stresses (1.2-15 dyn/cm2) for 3 h resulted in an induction of ecNOS mRNA in a dose-dependent manner. In human aortic endothelial cells, shear stresses of 15 dyn/cm2 for 3 h also resulted in ecNOS mRNA induction. In BAEC, this induction in ecNOS mRNA was prevented by coincubation with actinomycin D (10 micrograms/ml). The K+ channel antagonist tetraethylammonium chloride (3 mM) prevented increase in ecNOS mRNA in response to shear stress. The ecNOS promotor contains putative binding domains for AP-1 complexes, potentially responsive to activation of protein kinase C (PKC). However, selective PKC inhibitor calphostin C (100 nM) did not inhibit ecNOS induction by shear stress. Finally, production of nitrogen oxides under both basal conditions and in response to the calcium ionophore A-23187 (1 microM) by BAEC exposed to shear stress was increased approximately twofold compared with cells not exposed to shear stress. These data suggest that ecNOS mRNA expression is regulated by K+ channel opening, but not by activation of PKC, and that shear not only enhances ecNOS mRNA expression but increases capacity of endothelial cells to release NO.
Fluid flow and the associated shear stress play a critical role in vascular growth and remodeling. Recent data suggest that increased endothelial cell expression of platelet-derived growth factor (PDGF) A- and B-chain by flow may participate in these events. In the present study, we examined the mechanism for flow-induced PDGF expression, focusing on protein kinase C (PKC). Bovine aortic endothelial cells were exposed to flow (shear stress = 30 dyn/cm2) in a parallel-plate flow chamber. Increases in PDGF B-chain, but not PDGF A-chain, were observed within 3 h, maximal within 6 h (13-fold increase), and sustained for 24 h. PKC appeared to be involved because phorbol 12-myristate 13-acetate induced PDGF B-chain mRNA. Activation of PKC alone, however, was insufficient to induce PDGF mRNA because the selective PKC activator, 1-oleoyl-2-acetyl-sn-glycerol, did not induce PDGF expression. A PKC-independent pathway was suggested by the fact that inhibition of PKC (downregulation with phorbol 12,13-dibutyrate or exposure to staurosporine) failed to block PMA or flow-induced PDGF B-chain expression. These results demonstrate flow-induced PDGF B-chain expression in endothelial cells that appears to be mediated, in part, by a PKC-independent pathway.
Vasoactive intestinal peptide (VIP) is a putative neurotransmitter that causes vasodilation when injected intravenously. To learn more about the vasodilator actions of VIP, studies were performed on the rat mesenteric arterial bed and on cultured smooth muscle cells derived from both the rat mesenteric artery and aorta. In isolated perfused rat mesenteric artery beds, VIP caused relaxation at the threshold concentration of less than 1 nM and a maximal fall in perfusion pressure similar to that obtained with isoproterenol. VIP stimulated adenylate cyclase in cultured vascular smooth muscle cells in a concentration range of 10(-10)-10(-6) M; maximum activity was increased 2.7 +/- 0.6- and 3.4 +/- 0.4-fold above basal in mesenteric and aortic smooth muscle cells, respectively. The threshold and the half-maximal concentrations of VIP for adenylate cyclase stimulation were more than 50-fold lower than those for both prostaglandin E1 and isoproterenol in cultured mesenteric and aortic cells. Similar effects on cyclic AMP generation in response to VIP were observed in isolated rat mesenteric artery rings. Immunocytochemical examination of the rat mesenteric artery bed in situ demonstrated dense innervation of small- and medium-size vessels with nerve fibers containing VIP-like immunoreactivity. Thus VIP is present in the rat mesenteric artery, a peripheral arterial bed, and is a potent vasodilator that can activate vascular smooth muscle adenylate cyclase and thus potentially contribute to the regulation of vascular tone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.