Atherosclerotic lesions are found opposite vascular flow dividers at sites of low shear stress and oscillatory flow. Since endothelial proinflammatory genes prominent in lesions are regulated by oxidation-sensitive transcriptional control mechanisms, we examined the redox state of cultured human umbilical vein endothelial cells after either oscillatory or steady laminar fluid shear stress. Endothelial oxidative stress was assessed by measuring activity of the superoxide (O2.- )-producing NADH oxidase (a major source of reactive oxygen species in vascular cells), intracellular O2.- levels, induction of the redox-sensitive gene heme oxygenase-1 (HO-1), and abundance of Cu/Zn superoxide dismutase (Cu/Zn SOD), an antioxidant defense enzyme whose level of expression adapts to changes in oxidative stress. When cells were exposed to oscillatory shear (+/-5 dyne/cm2, 1 Hz) for 1, 5, and 24 hours, NADH oxidase activity and the amount of HO-1 progressively increased up to 174+/-16% (P<0.05) and 505+/-111% (P<0.05) versus static conditions, respectively, whereas levels of Cu/Zn SOD remained unchanged. This upregulation of HO-1 was completely blocked by the antioxidant N-acetylcysteine (NAC, 20 mmol/L). In contrast, steady laminar shear (5 dyne/cm2) induced NADH oxidase activity and NAC-sensitive HO-1 mRNA expression only at 1 and 5 hours, a transient response that returned toward baseline at 24 hours. Levels of Cu/Zn SOD mRNA and protein were increased after 24 hours of steady laminar shear. Furthermore, intracellular O2.-, as measured by dihydroethidium fluorescence, was higher in cells exposed to oscillatory than to laminar shear. These data are consistent with the hypothesis that continuous oscillatory shear causes a sustained activation of pro-oxidant processes resulting in redox-sensitive gene expression in human endothelial cells. Steady laminar shear stress initially activates these processes but appears to induce compensatory antioxidant defenses. We speculate that differences in endothelial redox state, orchestrated by different regimens of shear stress, may contribute to the focal nature of atherosclerosis.
Vascular endothelial cells appear to be aligned with the flow in the immediate vicinity of the arterial wall and have a shape which is more ellipsoidal in regions of high shear and more polygonal in regions of low shear stress. In order to study quantitatively the nature of this response, bovine aortic endothelial cells grown on Thermanox plastic coverslips were exposed to shear stress levels of 10, 30, and 85 dynes/cm2 for periods up to 24 hr using a parallel plate flow chamber. A computer-based analysis system was used to quantify the degree of cell elongation with respect to the change in cell angle of orientation and with time. The results show that (i) endothelial cells orient with the flow direction under the influence of shear stress, (ii) the time required for cell alignment with flow direction is somewhat longer than that required for cell elongation, (iii) there is a strong correlation between the degree of alignment and endothelial cell shape, and (iv) endothelial cells become more elongated when exposed to higher shear stresses.
Dynamic mechanical conditioning is investigated as a means of improving the mechanical properties of tissue-engineered blood vessel constructs composed of living cells embedded in a collagen-gel scaffold. This approach attempts to elicit a unique response from the embedded cells so as to reorganize their surrounding matrix, thus improving the overall mechanical stability of the constructs. Mechanical conditioning, in the form of cyclic strain, was applied to the tubular constructs at a frequency of 1 Hz for 4 and 8 days. The response to conditioning thus evinced involved increased contraction and mechanical strength, as compared to statically cultured controls. Significant increases in ultimate stress and material modulus were seen over an 8 day culture period. Accompanying morphological changes showed increased circumferential orientation in response to the cyclic stimulus. We conclude that dynamic mechanical conditioning during tissue culture leads to an improvement in the properties of tissue-engineered blood vessel constructs in terms of mechanical strength and histological organization. This concept, in conjunction with a proper biochemical environment, could present a better model for engineering vascular constructs.
The constitutive endothelial cell nitric oxide synthase (NOS) importantly regulates vascular homeostasis. To gain understanding of this enzyme, a pEF BOS cDNA library of 5 X 105 clones was prepared from bovine aortic endothelial cells (BAEC) and screened with a 2.8-kb cDNA BamHI fragment of rat brain NOS. Clone pBOS13 was found to express NO synthase activity when transfected into COS-7 cells. Sequence analysis revealed sequences compatible with binding domains for calcium/calmodulin, flavin mononucleotide, flavin adenine nucleotide and NADPH. The deduced amino acid sequence revealed a protein with a relative mol mass of 133,286, which is 58% homologous to the rat cerebellar NOS and 51% homologous to the mouse macrophage NOS. The amino-terminal portion of the protein exhibits several characteristics peculiar to the endothelial cell NOS. These include a proline-rich region and several potential sites for proline-directed phosphorylation as well as a potential substrate site for acyl transferase. Northern hybridization to mRNA from cultured BAEC revealed an abundant 4.8-kb message, which was not increased by coincubation with tumor necrosis factor a, but was markedly increased by exposure to shear stress for 24 h. The unique features of the endothelial cell NO synthase, particularly in the amino terminal portion of the molecule, may provide for novel regulatory influences of enzyme activity and localization. (J.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.