Homozygotes for the dsy1 desynaptic mutant of maize show massive failure of chiasma maintenance during diplotene and diakinesis. Although some chiasmata persist until anaphase I in most microsporocytes expressing this mutant, homozygotes are completely or nearly completely sterile, owing apparently to disjunctive irregularities. Pachytene synaptic errors and some synaptic failure also are found, but recombination nodules are common in homologously synapsed regions, and equational separation of a heterozygous knob into univalents or open arms at diakinesis clearly demonstrates that chiasma failure occurs following crossing-over. A wider than normal synaptonemal complex central region and uniform apparent weakness of central region cross connections to spreading procedures strongly suggest the presence of a genetic lesion in a synaptonemal complex central region component. The dsy1 mutant may provide an especially important source of material for molecular studies on the nature of chiasma maintenance mechanism.
The phenotype of the desynaptic (dy) mutant of maize in microsporocytes at meiotic prophase was compared with normal microsporocytes of a closely related strain and with microsporocytes of a maize inbred line (KYS) assumed to be normal. Strikingly more univalents and open arms of bivalents were found in the mutant cells than in normal cells at diakinesis, and where there was heterozygosity for a distal knob (heterochromatic region), separation was usually equational, indicating the occurrence of normal crossing-over followed by failure of chiasma maintenance in the mutant. Differences found in the mutant by electron microscopy were a statistically significant wider dimension of the synaptonemal complex central region and also less twisting of synapsed configurations at pachytene. It is suggested that these are side-effect symptoms of a defect in the synaptonemal complex (or associated substance), which is expressed later as sporadic loss of chiasma maintenance.
More detailed observations of the synaptonemal complex (SC) in asynaptic maize plants have been faciliated by superior silver-staining procedures. These suggest that central region components of the SC are strongly implicated as defective in asynaptic. Apparently homologous axial elements tend to follow roughly parallel courses within the nucleus at pachytene, in some short segments apparently synapsed and in others at wider separation than normal synapsis yet close enough to allow observation of thin central element segments and also occasional thin transverse element-type structures. This kind of transverse filament may be weakened and severely stretched yet associated with both axial elements. Small nodules, similar to recombination nodules, appear at corresponding positions in widely separated axial elements. Key words : synaptonemal complex, central element, transverse filament, recombination nodule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.