Recent epidemics of fusarium head blight (FHB), caused by Fusarium graminearum Schwabe (telomorph: Gibberella zeae), in the USA and Canada have caused severe yield and quality losses in wheat (Triticum aestivum L.). Development of resistant cultivars has been difficult because of the complex inheritance of resistance and confounding environmental effects. This study was conducted to identify and map DNA markers linked to genes associated with FHB resistance. A population of 112 F5‐derived recombinant inbred (RI) wheat lines from the cross ‘Sumai 3’ (resistant)/‘Stoa’ (moderately susceptible) was evaluated in two greenhouse experiments for Type II resistance (spread within the spike). On the basis of restriction fragment length polymorphism (RFLP) marker analyses, five genomic regions were significantly (P < 0.01) associated with FHB resistance, three derived from Sumai 3 and two from Stoa. Regions on Chromosomes 3BS (from Sumai 3) and 2AL (from Stoa) were identified by interval analysis using a LOD threshold of 3.0. These two quantitative trait loci (QTL) have been assigned the gene designations QFhs.ndsu‐3B and QFhs.ndsu‐2A, respectively. Recombinant inbred lines with these two QTL had a median severity of 20.9%, compared with 36.2% for all RI lines. The best RFLP marker in the 3BS region explained 15.4% of the variation and a multiple regression model consisting of three QTL explained 29.5% of the variation. These results indicate that resistance to FHB is inherited in a quantitative manner and that marker‐assisted selection may aid the development of FHB‐resistant cultivars.
A major quantitative trait locus (QTL), Qfhs.ndsu-3BS, for resistance to Fusarium head blight (FHB) in wheat has been identified and verified by several research groups. The objectives of this study were to construct a fine genetic map of this QTL region and to examine microcolinearity in the QTL region among wheat, rice, and barley. Two simple sequence repeat (SSR) markers (Xgwm533 and Xgwm493) flanking this QTL were used to screen for recombinants in a population of 3,156 plants derived from a single F(7) plant heterozygous for the Qfhs.ndsu-3BS region. A total of 382 recombinants were identified, and they were genotyped with two more SSR markers and eight sequence-tagged site (STS) markers. A fine genetic map of the Qfhs.ndsu-3BS region was constructed and spanned 6.3 cM. Based on replicated evaluations of homozygous recombinant lines for Type II FHB resistance, Qfhs.ndsu-3BS, redesignated as Fhb1, was placed into a 1.2-cM marker interval flanked by STS3B-189 and STS3B-206. Primers of STS markers were designed from wheat expressed sequence tags homologous to each of six barley genes expected to be located near this QTL region. A comparison of the wheat fine genetic map and physical maps of rice and barley revealed inversions and insertions/deletions. This suggests a complex microcolinearity among wheat, rice, and barley in this QTL region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.