The scale up of the novel, pharmaceutically important pneumocandin (B(0)), from the filamentous fungus Glarea lozoyensis was successfully completed from pilot scale (0.07, 0.8, and 19 m(3)) to production scale (57 m(3)). This was accomplished, despite dissimilar reactor geometry, employing a combination of scale-up criteria, process sensitivity studies, and regime analysis using characteristic time constants for both oxygen mass transfer and bulk mixing. Dissolved oxygen tension, separated from the influence of agitation by gas blending at the 0.07 m(3)-scale, had a marked influence on the concentrations of pneumocandin analogs with different levels of hydroxylation, and these concentrations were used as an indicator of bulk mixing upon scale up. The profound impact of dissolved oxygen tension (DOT) (low and high levels) on analog formation dictated the use of constant DOT, at 80% air saturation, as a scale-up criterion. As a result k(L)a, Oxygen uptake rate (OUR) and hence the OTR were held constant, which were effectively conserved across the scales, while the use of other criterion such as P(g)/V(L), or mixing time were less effective. Production scale (57 m(3)) mixing times were found to be faster than those at 19 m(3) due to a difference in liquid height/tank diameter ratio (H(L)/D(T)). Regime analysis at 19 and 57 m(3) for bulk mixing (t(c)) and oxygen transfer (1/k(L)a) showed that oxygen transfer was the rate-limiting step for this highly shear thinning fermentation, providing additional support for the choice of scale-up criterion.
Laboratory experiments were conducted to validate theoretical predictions describing a dialysis continuous process for the fermentation of whey lactose to ammonium lactate, in which the fermentor contents are poised at a constant pH by adding ammonia solution and dialyzed through a membrane against water. Dried sweet-cheese whey was rehydrated to contain 230 mg of lactose per ml, supplemented with 8 mg of yeast extract per ml, charged into a 5-liter fermentor without sterilization, adjusted in pH (5.3) and temperature (44°C), and inoculated with Lactobacillus bulgaricus. The fermentor and dialysate circuits were connected, and steady-state conditions were established. A series of such conditions was managed nonaseptically for 94 days to study the process and to demonstrate efficiency and productivity. As time progressed, the fermentation remained homofermentative and increased in conversion efficiency, although membrane fouling necessitated dialyzer cleaning about every 4 weeks. With a retention time of 19 h, 97% of the substrate was converted into products. Relative to nondialysis continuous or batch processes for the fermentation, the dialysis continuous process enabled the use of more concentrated substrate, was more efficient in the rate of substrate conversion, and additionally produced a second effluent of less concentrated but purer ammonium lactate.
A mathematical model was developed to describe a dialysis process for the continuous fermentation of whey lactose to lactic acid, with neutralization to a constant pH by ammonia. In the process, whey of a relatively high concentration is fed into the fermentor circuit at a relatively low rate so that the residual concentration of lactose is low. The fernentor effluent contains ammonium lactate, bacterial cells, and residual whey solids and could be used as a nitrogenenriched feedstuff for ruminant animals. Only water is fed into the dialysate circuit at a relatively high rate. The dialysate effluent contains purified ammonium lactate and could be converted to lactic acid and ammonium sulfate for industry. The fermentation was specifically modeled as a set of equations representing material balances and rate relationships in the two circuits. Dialysis continuous fermentations, in general, were modeled by combining these equations and by using dimensionless parameters. The generalized model was then solved for the steady state and used to simulate the specific fermentation on a digital computer. The results showed the effects of various material and operational and kinetic parameters on the process and predicted that it could be operated efficiently.
SummaryA generalized mathematical model, previously developed and experimentally validated, was modified and used to computer-simulate two dialysate-feed systems for operating a dialysis continuous process for the ammonium lactate fermentation. The simulations predicted that the feeding of substrate into the dialysate circuit and thence into the fermentor circuit via dialysis should greatly improve the production of cell mass and metabolite product. Experiments were conducted to test the system in which the fermentor is operated without an effluent, thus immobilizing the cells. Dried cheese whey ultrafiltrate was rehydrated to contain a normal concentration of lactose (62 mdml), supplemented with yeast extract, and fed without sterilization into a Niter fermentor maintained at pH 5.5 and 44°C with an adapted culture of Lnctobacillus bulgaricus. The system was operated without interruption for 26 days. Results during steady-state conditions showed that the system is a new and useful way to immobilize living cells for the purpose of producing a metabolite at a high rate for a prolonged time. The substrate consumed by the cells is converted to product via maintenance metabolism only and is sterilized by dialysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.