Tissue engineering is an effective approach for the treatment of bone defects. Statins have been demonstrated to promote osteoblastic differentiation of bone marrow-derived stromal cells (BMSCs). Electrospun biodegradable fibers have also shown applicability to drug delivery in the form of bone tissue engineered scaffolds with nano- to microscale topography and high porosity similar to the natural extracellular matrix (ECM). The aim of this study was to investigate the feasibility of a simvastatin-releasing, biodegradable, nano- to microscale fiber scaffold (SRBFS) for bone tissue engineering with BMSCs. Simvastatin was released from SRBFS slowly. BMSCs were observed to spread actively and rigidly adhere to SRBFS. BMSCs on SRBFS showed an increase in alkaline phosphatase activity 2 weeks after cell culture. Furthermore, osteoclastogenesis was suppressed by SRBFS in vitro. The new bone formation and mineralization in the SRBFS group were significantly better than in the biodegradable fiber scaffold (BFS) without simvastatin 12 weeks after implantation of the cell-scaffold construct into an ectopic site on the murine back. These results suggest that SRBFS promoted osteoblastic differentiation of BMSCs in vitro and in vivo, and demonstrate feasibility as a bone engineering scaffold.
Growth differentiation factor 5 induced the expression of scleraxis and may enhance tendo/ligamentogenesis in human periodontal ligament-derived cells. The expression of scleraxis was higher in STRO-1-negative fraction, suggesting more differentiated state of the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.