MicroRNAs (miRNAs) have key roles in breast cancer progression, and their expression levels are heterogeneous across individual breast cancer patients. Traditional methods aim to identify differentially expressed miRNAs in populations rather than in individuals and are affected by the expression intensities of miRNAs in different experimental batches or platforms. Thus it is urgent to conduct miRNA differential expression analysis at an individual level for further personalized medicine research. We proposed a straightforward method to determine the differential expression of each miRNA in an individual patient by utilizing the reversal expression order of miRNA pairs between two conditions (cancer and normal tissue). We applied our method to breast cancer miRNA expression profiles from The Cancer Genome Atlas and two other independent data sets. In total, 292 miRNAs were differentially expressed in individual breast cancer patients. Using the differential expression profile of miRNAs in individual patients, we found that the deregulations of miRNA tend to occur in specific breast cancer subtypes. We investigated the coordination effect between the miRNA and its target, based on the hypothesis that one gene function can be changed by copy number alterations of the corresponding gene or deregulation of the miRNA. We revealed that patients exhibiting an upregulation of hsa-miR-92b and patients with deletions of PTEN did not tend to overlap, and hsa-miR-92b and PTEN coordinately regulated the pathway of ‘cell cycle' and so on. Moreover, we discovered a new prognostic signature, hsa-miR-29c, whose downregulation was associated with poor survival of breast cancer patients.
Background and Aim. Schizophrenia is a complex psychiatric disorder with an unknown etiology. Previous studies suggest that apoptosis is potentially involved in the pathophysiology of schizophrenia, but whether apoptotic markers can help diagnosis of schizophrenia has not been reported. This study aimed to establish a potential diagnostic model based on apoptosis-related gene expression in blood samples and to construct a competing endogenous RNA (ceRNA) network that could provide mechanistic insight of schizophrenia. Methods. Gene expression profiles and apoptosis-related data were downloaded from the Gene Expression Omnibus and Molecular Signature databases, respectively. Apoptosis-related differentially expressed mRNAs (DEGs) and miRNAs (DEMs) from blood samples between the schizophrenia and healthy control individuals were screened. A diagnostic model was developed using the data from univariate and least absolute shrinkage and selection operator (LASSO) regression analyses, followed by validation using the GSE38485 dataset. Cases were divided into low-risk (LR) and high-risk (HR) groups based on the risk score of the model, and differences in immune gene sets and pathways between these two groups were compared. Finally, a ceRNA network was constructed by integrating long non-coding RNAs (lncRNAs), DEMs, and DEGs. Results. A diagnostic model containing 15 apoptosis-related genes was developed and its diagnostic efficiency was found to be robust. The HR group was correlated with higher immune scores of chemokines, cytokines, and interleukins; it was also significantly involved in pathways such as pancreatic beta cells and early estrogen response. A ceRNA network composed of 2 lncRNAs, 14 miRNAs, and 5 mRNAs was established. Conclusions. The established model is a potential tool to improve the diagnostic efficiency of patients with schizophrenia, and the nodes included in the ceRNA network might serve as biomarkers and therapeutic targets for schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.