β1-Integrin, a critical regulator of β cell survival and function, has been shown to protect against cell death and promote insulin expression and secretion in rat and human islet cells in vitro. The aim of the present study was to examine whether the knockout of β1-integrin in collagen I-producing cells would have physiological and functional implications in pancreatic endocrine cells in vivo. Using adult mice with a conditional knockout of β1-integrin in collagen I-producing cells, the effects of β1-integrin deficiency on glucose metabolism and pancreatic endocrine cells were examined. Male β1-integrin-deficient mice display impaired glucose tolerance, with a significant reduction in pancreatic insulin content (p < 0.01). Morphometric analysis revealed a significant reduction in β cell mass (p < 0.001) in β1-integrin-deficient mice, along with a significant decrease in β cell proliferation, Pdx-1 and Nkx6.1 expression when compared with controls. Interestingly, these physiological and morphometric alterations in female β1-integrin-deficient mice were less significant. Furthermore, β1-integrin-deficient mice displayed decreased FAK (p < 0.05) and ERK1/2 (p < 0.001) phosphorylation, reduced cyclin D1 levels (p < 0.001) and increased caspase 3 cleavage (p < 0.01), while no changes in Akt phosphorylation were observed, indicating that the β1-integrin signals through the FAK-MAPK-ERK pathway in vivo. Our results demonstrate that β1-integrin is involved in the regulation of glucose metabolism and contributes to the maintenance of β cell survival and function in vivo.
Hepatocyte growth factor (HGF) has been suggested to be a potent regulator of -cell function and proliferation. The purpose of this study was to investigate whether HGF could regulate the proliferation and differentiation of islet-derived epithelial monolayers into insulin-producing cells. We have generated islet-derived epithelial monolayers that are enriched with cells expressing c-Kit, a tyrosine kinase receptor and putative marker, from isolated postnatal rat islets. Monolayers were cultured on type I collagen gel and treated in defined differentiation medium with or without HGF (50 ng/ml) for 7 days. Subsequently, the expression of transcription factors and pancreatic endocrine cell markers as well as c-Kit expression were compared between the HGF (HGF + ), no HGF treatment (HGF ) and monolayers without differentiation medium (control) groups, using immunocytochemical and RT-PCR approaches. We observed that the number of c-Kit-, glucose transport type 2 (Glut2)-and the transcription factor pancreatic duodenal homeobox-1 (PDX-1)-expressing cells were significantly increased in the HGF + group. The expression of insulin at the mRNA and protein level was also increased in this treatment group with a 1·7-fold increase in basal insulin release and a 2·3-fold increase in insulin content in comparison with the HGF group. A high proliferative capacity was also found in the HGF + group. Co-localization of insulin and PDX-1 or Glut2 was revealed frequently in cells treated with HGF + with occasional co-staining of c-Kit and insulin observed. This study showed that HGF can activate the proliferation and differentiation of islet-derived epithelial monolayer into insulin-producing cells. However, no formation of islet-like clusters was observed. Taken together, this study implies that HGF mediates differentiation of immature cell types into insulin-expressing cells; however, HGF supplementation alone is insufficient in restoring full -cell function.
There has over the last several years been renewed interest in developing a system for generating new islets and a search for a self-renewing population in the pancreas. In particular, the neural stem cell marker nestin has been implicated as an islet precursor marker and its immunoreactivity has been localized in the islets of Langerhans. This study examines islet-derived epithelial monolayers expanded ex vivo to provide a source of nestin-expressing progenitor cells -a model that will help us understand the role of nestin-expressing cells in islet cell development. When cultured on a type I collagen gel, islets formed confluent monolayers which lacked endocrine phenotypes but were positive for cytokeratin 20 and contained an increased proportion of proliferating nestin-expressing cells, reaching a maximum of 54 10%. Co-expression studies demonstrated that the nestin-positive cells are heterogeneous, with some nestin-expressing cells colocalizing with the transcription factor PDX-1 and glucose transporter type 2 or lack of co-expression with vimentin. When clonal populations of nestin-positive cells were expanded and subjected to a differentiation protocol, only a population that expressed the transcription factor PDX-1 at the mRNA level was capable of re-expressing insulin at the mRNA and protein level. In conclusion, these studies demonstrate that expanded nestin-expressing cells in vitro from islet-derived epithelial monolayers are heterogeneous; clonal analysis of nestin-positive cells reveals that a distinct subpopulation of nestin/PDX-1-expressing cells is capable of forming insulin-producing cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.