We study the use of simultaneous confidence bands for low-dose risk estimation with quantal response data, and derive methods for estimating simultaneous upper confidence limits on predicted extra risk under a multistage model. By inverting the upper bands on extra risk, we obtain simultaneous lower bounds on the benchmark dose (BMD). Monte Carlo evaluations explore characteristics of the simultaneous limits under this setting, and a suite of actual data sets are used to compare existing methods for placing lower limits on the BMD.
The definition and observation of clear-cut adverse health effects for continuous (quantitative) responses, such as altered body weights or organ weights, are difficult propositions. Thus, methods of risk assessment commonly used for binary (quantal) toxic responses such as cancer are not directly applicable. In this paper, two methods for calculating upper confidence limits on excess risk for quantitative toxic effects are proposed, based on a particular definition of an adverse quantitative response. The methods are illustrated with data from a dose-response study, and their performance is evaluated with a Monte Carlo simulation study.
We study the popular benchmark dose (BMD) approach for estimation of low exposure levels in toxicological risk assessment, focusing on dose-response experiments with quantal data. In such settings, representations of the risk are traditionally based on a specified, parametric, dose-response model. It is a well-known concern, however, that uncertainty can exist in specification and selection of the model. If the chosen parametric form is in fact misspecified, this can lead to inaccurate, and possibly unsafe, lowdose inferences. We study the effects of model selection and possible misspecification on the BMD, on its corresponding lower confidence limit (BMDL), and on the associated extra risks achieved at these values, via large-scale Monte Carlo simulation. It is seen that an uncomfortably high percentage of instances can occur where the true extra risk at the BMDL under a misspecified or incorrectly selected model can surpass the target BMR, exposing potential dangers of traditional strategies for model selection when calculating BMDs and BMDLs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.