This paper presents and studies Fredholm integral equations associated with the linear Riemann-Hilbert problems on multiply connected regions with smooth boundary curves. The kernel of these integral equations is the generalized Neumann kernel. The approach is similar to that for simply connected regions (see [R. Wegmann, A.H.M. Murid, M.M.S. Nasser, The Riemann-Hilbert problem and the generalized Neumann kernel, J. Comput. Appl. Math. 182 (2005) 388-415]). There are, however, several characteristic differences, which are mainly due to the fact, that the complement of a multiply connected region has a quite different topological structure. This implies that there is no longer perfect duality between the interior and exterior problems.We investigate the existence and uniqueness of solutions of the integral equations. In particular, we determine the exact number of linearly independent solutions of the integral equations and their adjoints. The latter determine the conditions for solvability. An analytic example on a circular annulus and several numerically calculated examples illustrate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.