Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
In plants, an active defense against biotrophic pathogens is dependent on a functional continuum between the cell wall (CW) and the plasma membrane (PM). It is thus anticipated that proteins maintaining this continuum also function in defense. The legume-like lectin receptor kinase LecRK-I.9 is a putative mediator of CW-PM adhesions in Arabidopsis and is known to bind in vitro to the Phytophthora infestans RXLR-dEER effector IPI-O via a RGD cell attachment motif present in IPI-O. Here we show that LecRK-I.9 is associated with the plasma membrane, and that two T-DNA insertions lines deficient in LecRK-I.9 (lecrk-I.9) have a ‘gain-of-susceptibility’ phenotype specifically towards the oomycete Phytophthora brassicae. Accordingly, overexpression of LecRK-I.9 leads to enhanced resistance to P. brassicae. A similar ‘gain-of-susceptibility’ phenotype was observed in transgenic Arabidopsis lines expressing ipiO (35S-ipiO1). This phenocopy behavior was also observed with respect to other defense-related functions; lecrk-I.9 and 35S-ipiO1 were both disturbed in pathogen- and MAMP-triggered callose deposition. By site-directed mutagenesis, we demonstrated that the RGD cell attachment motif in IPI-O is not only essential for disrupting the CW-PM adhesions, but also for disease suppression. These results suggest that destabilizing the CW-PM continuum is one of the tactics used by Phytophthora to promote infection. As countermeasure the host may want to strengthen CW-PM adhesions and the novel Phytophthora resistance component LecRK-I.9 seems to function in this process.
Summary Late blight caused by the plant pathogenic oomycete Phytophthora infestans is known as one of the most destructive potato diseases. Plant breeders tend to employ NB‐LRR‐based resistance for introducing genetically controlled late blight resistance in their breeding lines. However, P. infestans is able to rapidly escape this type of resistance, and hence, NB‐LRR‐based resistance in potato cultivars is often not durable. Previously, we identified a novel type of Phytophthora resistance in Arabidopsis. This resistance is mediated by the cell surface receptor LecRK‐I.9, which belongs to the family of L‐type lectin receptor kinases. In this study, we report that expression of the Arabidopsis LecRK‐I.9 gene in potato and Nicotiana benthamiana results in significantly enhanced late blight resistance. Transcriptional profiling showed strong reduction in salicylic acid (SA)‐mediated defence gene expression in LecRK‐I.9 transgenic potato lines (TPLs). In contrast, transcripts of two protease inhibitor genes accumulated to extreme high levels, suggesting that LecRK‐I.9‐mediated late blight resistance is relying on a defence response that includes activation of protease inhibitors. These results demonstrate that the functionality of LecRK‐I.9 in Phytophthora resistance is maintained after interfamily transfer to potato and N. benthamiana and suggest that this novel type of LecRK‐based resistance can be exploited in breeding strategies to improve durable late blight resistance in Solanaceous crops.
A dominant allele at the Mi locus on chromosome 6 of tomato (Lycopersicon esculentum Mill) confers resistance to three species of root-knot nematodes (Meloidogyne). The resistance, which is associated with a localized necrotic response, was originally introduced into tomato from the wild species Lycopersicon peruvianum. As a step towards the molecular cloning of Mi, we have identified closely linked DNA markers from both cDNA and genomic DNA libraries as restriction fragment length polymorphisms (RFLPs). DNA from tomato populations segregating for nematode resistance was analyzed to generate a high-resolution genetic map of this region. Additional information on gene order was obtained by comparing the size of the introgressed L. peruvianum chromosomal segment within a collection of nematode-resistant tomato lines. Among the four cDNA markers that are tightly linked to Mi, three are dominant, i.e. L. peruvianum-specific. One cDNA marker corresponds to a gene family comprising 20-30 members, one of which is diagnostic for all nematode-resistant genotypes tested. The presence of non-homologous sequences around the Mi gene may contribute to the suppression of recombination in this region of the genome in crosses heterozygous for Mi. The potential of 'walking' from closely linked markers to Mi is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.