Butte, Montana is part of the largest superfund site in the continental United States. Open-pit mining continues in close proximity to Butte’s urban population. This study seeks to establish baseline metal concentrations in the hair and blood of individuals living in Butte, MT and possible routes of exposure. Volunteers from Butte (n= 116) and Bozeman (n=86) were recruited to submit hair and blood samples and asked to complete a lifestyle survey. Elemental analysis of hair and blood samples was performed by ICP-MS. Three air monitors were stationed in Butte to collect particulate and filters were analyzed by ICP-MS. Soil samples from the yards of Butte volunteers were quantified by ICP-MS. Hair analysis revealed concentrations of Al, As, Cd, Cu, Mn, Mo, and U to be statistically elevated in Butte’s population. Blood analysis revealed that the concentration of As was also statistically elevated in the Butte population. Multiple regression analysis was performed for the elements As, Cu, and Mn for hair and blood samples. Soil samples revealed detectable levels of As, Pb, Cu, Mn, and Cd, with As and Cu levels being higher than expected in some of the samples. Air sampling revealed consistently elevated As and Mn levels in the larger particulate sampled as compared to average U.S. ambient air data.
This manuscript details investigations of a productive, mountain freshwater lake and examines the dynamic relationship between the chemical and stable isotopes and microbial composition of lake bed sediments with the geochemistry of the lake water column. A multidisciplinary approach was used in order to better understand the lake water‐sediment interactions including quantification and sequencing of microbial 16S rRNA genes in a sediment core as well as stable isotope analysis of C, S, and N. One visit included the use of a pore water sampler to gain insight into the composition of dissolved solutes within the sediment matrix. Sediment cores showed a general decrease in total C with depth which included a decrease in the fraction of organic C combined with an increase in the fraction of inorganic C. One sediment core showed a maximum concentration of dissolved organic C, dissolved inorganic C, and dissolved methane in pore water at 4 cm depth which corresponded with a sharp increase in the abundance of 16S rRNA templates as a proxy for the microbial population size as well as the peak abundance of a sequence affiliated with a putative methanotroph. The isotopic separation between dissolved inorganic and dissolved organic carbon is consistent with largely aerobic microbial processes dominating the upper water column, while anaerobic microbial activity dominates the sediment bed. Using sediment core carbon concentrations, predictions were made regarding the breakdown and return of stored carbon per year from this temperate climate lake with as much as 1.3 Gg C yr−1 being released in the form of CO2 and CH4.
Bacterial cultures exposed to iron-doped apatite nanoparticles (IDANPs) prior to the introduction of antagonistic viruses experience up to 2.3 times the bacterial destruction observed in control cultures. Maximum antibacterial activity of these bacteria-specific viruses, or phage, occurs after bacterial cultures have been exposed to IDANPs for 1 hr prior to phage introduction, demonstrating that IDANP-assisted phage therapy would not be straight forward, but would instead require controlled time release of IDANPs and phage. These findings motivated the design of an electrospun nanofiber mesh treatment delivery system that allows burst release of IDANPs, followed by slow, consistent release of phage for treatment of topical bacterial infections. IDANPs resemble hydroxyapatite, a biocompatible mineral analogous to the inorganic constituent of mammalian bone, which has been approved by the Food and Drug Administration for many biomedical purposes. The composite nanofiber mesh was designed for IDANP-assisted phage therapy treatment of topical wounds and consists of a superficial, rapid release layer of polyethylene oxide (PEO) fibers doped with IDANPs, followed by inner, coaxial polycaprolactone / polyethylene glycol (PCL/PEG) blended polymer fiber layer for slower phage delivery. Our investigations have established that IDANP-doped PEO fibers are effective vehicles for dissemination of IDANPs for bacterial exposure and resultant increased bacterial death by phage. In this work, slower delivery of the phage behind IDANPs was accomplished using coaxial, electrospun fibers composed of PCL/PEG polymer blend.
Background: Primary care providers (PCPs) frequently address dermatologic concerns and perform skin examinations during clinical encounters. For PCPs who evaluate concerning skin lesions, dermoscopy (a noninvasive skin visualization technique) has been shown to increase the sensitivity for skin cancer diagnosis compared with unassisted clinical examinations. Because no formal consensus existed on the fundamental knowledge and skills that PCPs should have with respect to dermoscopy for skin cancer detection, the objective of this study was to develop an expert consensus statement on proficiency standards for PCPs learning or using dermoscopy.Methods: A 2-phase modified Delphi method was used to develop 2 proficiency standards. In the study's first phase, a focus group of PCPs and dermatologists generated a list of dermoscopic diagnoses and associated features. In the second phase, a larger panel evaluated the proposed list and determined whether each diagnosis was reflective of a foundational or intermediate proficiency or neither.Results: Of the 35 initial panelists, 5 PCPs were lost to follow-up or withdrew; 30 completed the fifth and last round. The final consensus-based list contained 39 dermoscopic diagnoses and associated features.Conclusions: This consensus statement will inform the development of PCP-targeted dermoscopy training initiatives designed to support early cancer detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.