The Juno microwave radiometer measured the thermal emission from Jupiter's atmosphere from the cloud tops at about 1 bar to as deep as a hundred bars of pressure during its first flyby over Jupiter (PJ1). The nadir brightness temperatures show that the Equatorial Zone is likely to be an ideal adiabat, which allows a determination of the deep ammonia abundance in the range
362−33+33 ppm. The combination of Markov chain Monte Carlo method and Tikhonov regularization is studied to invert Jupiter's global ammonia distribution assuming a prescribed temperature profile. The result shows (1) that ammonia is depleted globally down to 50–60 bars except within a few degrees of the equator, (2) the North Equatorial Belt is more depleted in ammonia than elsewhere, and (3) the ammonia concentration shows a slight inversion starting from about 7 bars to 2 bars. These results are robust regardless of the choice of water abundance.
Experimentally derived energy levels are presented for 12248 vibration–rotation states of the H216O isotopomer of water, more than doubling the number in previous, disparate, compilations. For each level an error and reference to source data is given. The levels have been checked using energy levels derived from sophisticated variational calculations. These levels span 107 vibrational states including members of all polyads up to and including 8ν. Band origins, in some cases estimates, are presented for 101 vibrational modes.
This paper describes a new Heterodyne Array Receiver Program (HARP) and Auto‐Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope. The 16‐element focal‐plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three‐dimensional) mapping speeds, along with significant improvements over single‐detector counterparts in calibration and image quality. Receiver temperatures are ∼120 K across the whole band, and system temperatures of ∼300 K are reached routinely under good weather conditions. The system includes a single‐sideband (SSB) filter so these are SSB values. Used in conjunction with ACSIS, the system can produce large‐scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully sampled maps of size can be observed in under 1 h.
The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large‐scale unbiased surveys of galactic and extra‐galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three‐dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide‐field continuum studies and produce the essential preparatory work for submillimetre interferometers such as the Submillimeter Array (SMA) and Atacama Large Millimeter/Submillimeter Array (ALMA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.