The striatum, principal input structure of the basal ganglia, is crucial to both motor control and learning. It receives convergent input from all over neocortex, hippocampal formation, amygdala and thalamus, and is the primary recipient of dopamine in the brain. Within the striatum is a GABAergic microcircuit that acts upon these inputs, formed by the dominant medium-spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs). There has been little progress in understanding the computations it performs, hampered by the non-laminar structure that prevents identification of a repeating canonical microcircuit. We here begin the identification of potential dynamically-defined computational elements within the striatum. We construct a new three-dimensional model of the striatal microcircuit's connectivity, and instantiate this with our dopamine-modulated neuron models of the MSNs and FSIs. A new model of gap junctions between the FSIs is introduced and tuned to experimental data. We introduce a novel multiple spiketrain analysis method, and apply this to the outputs of the model to find groups of synchronised neurons at multiple time-scales. We find that, with realistic in vivo background input, small assemblies of synchronised MSNs spontaneously appear, consistent with experimental observations, and that the number of assemblies and the time-scale of synchronisation is strongly dependent on the simulated concentration of dopamine. We also show that feed-forward inhibition from the FSIs counter-intuitively increases the firing rate of the MSNs. Such small cell assemblies forming spontaneously only in the absence of dopamine may contribute to motor control problems seen in humans and animals following loss of dopamine cells.
Loss of dopamine from the striatum can cause both profound motor deficits, as in Parkinson's disease, and disrupt learning. Yet the effect of dopamine on striatal neurons remains a complex and controversial topic, and is in need of a comprehensive framework. We extend a reduced model of the striatal medium spiny neuron (MSN) to account for dopaminergic modulation of its intrinsic ion channels and synaptic inputs. We tune our D1 and D2 receptor MSN models using data from a recent large-scale compartmental model. The new models capture the input–output relationships for both current injection and spiking input with remarkable accuracy, despite the order of magnitude decrease in system size. They also capture the paired pulse facilitation shown by MSNs. Our dopamine models predict that synaptic effects dominate intrinsic effects for all levels of D1 and D2 receptor activation. We analytically derive a full set of equilibrium points and their stability for the original and dopamine modulated forms of the MSN model. We find that the stability types are not changed by dopamine activation, and our models predict that the MSN is never bistable. Nonetheless, the MSN models can produce a spontaneously bimodal membrane potential similar to that recently observed in vitro following application of NMDA agonists. We demonstrate that this bimodality is created by modelling the agonist effects as slow, irregular and massive jumps in NMDA conductance and, rather than a form of bistability, is due to the voltage-dependent blockade of NMDA receptors. Our models also predict a more pronounced membrane potential bimodality following D1 receptor activation. This work thus establishes reduced yet accurate dopamine-modulated models of MSNs, suitable for use in large-scale models of the striatum. More importantly, these provide a tractable framework for further study of dopamine's effects on computation by individual neurons.
A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100µm of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are inter-connected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study.
We develop a methodology for testing computational hypotheses about neural functionality articulated in models at the systems level of description. In this approach, the first step is to attempt the construction of a model of the underlying brain system which is consistent with the known anatomy and physiology, but which is also able to exhibit functional properties consistent with a putative computational hypothesis. If this is successful, the second step consists of including additional known pathways into the model and testing the new models to see whether they show an improvement in functional performance (using appropriate performance metrics). A positive outcome is taken as evidence in support of the hypothesis. A final step is to construct 'control' models by including pathways that are not consistent with biological data. In this case a performance detriment is taken as support for the hypothesis. The methodology is applied to the basal ganglia, and builds on a previously published model of this system (Gurney et al 2001 Biol. Cybern. 84 401-23) which was based on the hypothesis that the basal ganglia perform action selection. The realistically constrained models show a selection benefit, while control models show a decrement in selection ability. These results, taken together, provide further validation of our selection hypothesis of basal ganglia function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.