This paper addresses the issue of aerodynamic consequences of small variations in airfoil profile. A numerical comparison of flow field and cascade pressure losses for two representative repaired profiles and a reference new vane were made. Coordinates for the three airfoil profiles were obtained from the nozzle guide vanes of refurbished turboshaft engines using 3D optical scanning and digital modeling. The repaired profiles showed differences in geometry in comparison with the new vane, particularly near the leading and trailing edges. A numerical simulation was conducted using a commercial CFD code, which uses the finite volume approach for solving the governing equations. The computational predictions of the aerodynamic performance were compared with experimental results obtained from a cascade consisting of blades with the same airfoil profiles. The CFD analysis was performed for the cascade at subsonic inlet and transonic exit conditions. Boundary layer growth, wake formation, and shock boundary layer interactions were observed in the two-dimensional computations. The flow field showed the presence of shock waves downstream of the passage throat and near the trailing edges of the blades. A conspicuous change in flow pattern due to subtle variation in airfoil profile was observed. The calculated flow field was compared with the flow pattern visualized in the experimental test rig using the schlieren method. The total pressure calculation for the cascade exit showed an increase in pressure loss for one of the off-design profiles. The pressure loss calculations were also compared with the multihole total pressure probe measurement in the transonic cascade rig.
This paper addresses the issue of aerodynamic performance of a novel 3D leading edge modification to a reference low pressure turbine blade. An analysis of tubercles found in nature and used in some engineering applications was employed to synthesize new leading edge geometry. A sinusoidal wave-like geometry characterized by wavelength and amplitude was used to modify the leading edge along the span of a 2D profile, rendering a 3D blade shape. The rationale behind using the sinusoidal leading edge was that they induce streamwise vortices at the leading edge which influence the separation behaviour downstream. Surface pressure and total pressure measurements were made in experiments on a cascade rig. These were complemented with computational fluid dynamics studies where flow visualization was also made from numerical results. The tests were carried out at low Reynolds number of 5.5 × 104 on a well-researched profile representative of conventional low pressure turbine profiles. The performance of the new 3D leading edge geometries was compared against the reference blade revealing a downstream shift in separated flow for the LE tubercle blades; however, total pressure loss reduction was not conclusively substantiated for the blade with leading edge tubercles when compared with the performance of the baseline blade. Factors contributing to the total pressure loss are discussed.
The assessment of flow quality through a newly constructed transonic turbine cascade is presented. Although the main objective of this research was to investigate the effect of the modification of a vane profile due to repair on pressure loss, only the results for checking the flow periodicity, two-dimensionality of the flow and transonic exit flow condition are described in this paper. The cascade blades were constructed using the profiles of nozzle guide vanes of a low pressure turbine of an in-service turboshaft engine. The assessment of the flow quality in the cascade was carried out using three methods: wall static pressure measurements at the inlet and exit of each flow passage of the cascade to check the flow periodicity, surface flow visualization using blackened paraffin oil to check the two dimensionality of the flow and thirdly, Schlieren flow visualization to verify the periodicity and transonic flow conditions at the exit of the cascade. The cascade inlet and exit wall pressure showed that the flow was nominally periodic in the cascade. The surface flow visualization of the suction surface showed that the flow was two-dimensional on approximately 70% of the central span and also indicated flow separations on the suction surface. The Schlieren flow visualization confirmed the flow periodicity and revealed the existence of shock waves on the suction surface and near the trailing edge of the blades.
E xp erim en tal Evaluation of S ervice-Exposed Nozzle G uide Vane D am ag e in a R olls Royce A -250 Gas TurbineA unique methodology and test rig was designed to evaluate the degradation o f damaged nozzle guide vanes (NGVs) in a transonic annular cascade in the short duration facility at the Royal Military College. A custom test section was designed which featured a novel rotating instrumentation suite. This permitted 360 deg multispan traverse measurements downstream from unmodified turbine NGV rings from a Rolls-Royce!Allison A-250 turbo shaft engine. The downstream total pressure was measured at four spanwise locations on both an undamaged reference and a damaged test article. Three peiformance metrics were developed in an effort to determine characteristic signatures fo r common opera tional damage such as trailing edge bends or cracked trailing edges. The highest average losses were observed in the root area, while the lowest occurred closer to the NGV tips. The results from this study indicated that multiple spanwise traverses were required to detect localized trailing edge damage. Recommendations are made fo r future testing and to further develop performance metrics.Off-Design NGV Conditions. Service-exposed damage in gas turbines can often be visually identified. Figure 1 shows the three Contributed by the Turbomachinery Committee of ASME for publication in the Journal of E ngineering for G as T urbines and Power. Manuscript
This paper addresses the issue of aerodynamic consequences of small variations in airfoil profile. A numerical comparison of flow field and cascade pressure losses for two representative repaired profiles and a reference new vane were made. Coordinates for the three airfoil profiles were obtained from the nozzle guide vanes of refurbished turboshaft engines using 3D optical scanning and digital modeling. The repaired profiles showed differences in geometry in comparison with the new vane, particularly near the leading and trailing edges. A numerical simulation was conducted using a commercial CFD code which uses the finite element approach for solving the governing equations. The computational predictions of the aerodynamic performance were validated with experimental results obtained from a transonic cascade consisting of blades with the same airfoil profiles. A CFD analysis was performed for the cascade at subsonic inlet and transonic exit conditions. Boundary layer growth, wake formation, and shock boundary layer interactions were observed in the two-dimensional computations. The flow field showed the presence of shock waves downstream of the passage throat and near the trailing edges of the blades. A conspicuous change in flow pattern due to subtle variation in airfoil profile was observed. The calculated flow field was compared with the flow pattern visualized in the experimental test rig using the Schlieren method. The total pressure calculation for the cascade exit showed an increase in pressure loss for one of the off-design profiles. The pressure loss calculations were also compared with the multi-hole total pressure probe measurement in the transonic cascade rig.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.