The effects of dietary nitrate on DM digestion, rumen volatile fatty acid concentrations, microbial protein outflow, rumen water kinetics, and methane production were studied. Eight rumen-cannulated sheep were acclimated to a diet consisting of chaffed oaten hay supplemented with either 4% KNO3 or 0% KNO3 but made iso-nitrogenous by the addition of urea. Nitrate supplementation did not affect blood methaemoglobin concentration, DM intake, whole tract or ruminal DM digestibility and the sheep appeared healthy at all times throughout the acclimation and experimental periods. Nitrate did cause changes in rumen fermentation consistent with its acting as a high-affinity hydrogen acceptor, i.e. there was a tendency towards a lower molar percentage of propionate in the rumen volatile fatty acids, and higher molar ratio of acetate to propionate. Methane yield (MY, L methane/kg DM intake) was reduced by 23% in KNO3-supplemented sheep (P < 0.05) and these sheep tended to have a shorter mean fluid retention time in the rumen (MRT). There was a significant association between MRT and MY, such that a shorter MRT was associated with a lower MY. The results confirmed that the presence of nitrate in the diet lowers enteric methane production even though there was considerable between-animal variation in gut kinetics and methane production.
This study was designed to screen a large number of sheep to identify individuals with high and low methane (CH4) production, and to estimate repeatability and heritability of CH4 emissions in sheep, utilising portable accumulation chambers (PAC) designed for in-field use. Mature ewes (n = 710) selected from a research flock with known sires had their CH4 production over 1 h measured in PAC [CH4 (g1h)]. Individuals with High (n = 103) or Low (n = 104) CH4 (g1h), adjusted for liveweight (LW), were selected and re-measured on three occasions 1–4 months later, at another site with more abundant and better quality pasture. Mean of the selected (207) ewes CH4 (g1h) emissions were ~50% higher than at the first measurement site (0.66 g vs 0.42 g). LW was a significant correlate of CH4 production (r = 0.47). Correlations between CH4 (g1h) for the three PAC measurements at Site 2, before adjusting for LW ranged from 0.44 to 0.55. After adjusting for the effect of LW, repeatability was 0.33 at the first and 0.43 at the second site. The correlation between estimates of an animal’s emissions at the first and second sites, adjusted for LW, was 0.24. Initial CH4 production of the selected High group was 32% greater than the Low group (P < 0.0001). On re-measurement there was still a significant difference (9–15%, P < 0.006) between Low and High groups. The initial estimate of heritability of CH4 (g1h), based on variation between the ewes’ sires (0.13), was not maintained across the two sites. This may be due to genotype × environment interactions. We postulate that aspects of rumen physiology, which modulate CH4 production, could be expressed differently in different nutritional environments. Our results indicate that field use of PAC to screen sheep populations for CH4 production is both robust and repeatable. However, further investigations are required into the relationship between CH4 output of individual animals in PAC compared with the more controlled conditions in respiration chambers.
Merino ewes (n 108) joined to a single sire were allocated into three flocks, with ewes in one flock being chemically defaunated in the second month of gestation. Single lambs born to defaunated ewes (BF lambs) were heavier at birth and at weaning than lambs born to faunated ewes (F lambs). After weaning, all BF and F lambs were individually housed then half of the F lambs were chemically defaunated (DF lambs). In trial 1, BF, DF and F lambs were offered a concentrate-based diet containing either 14 or 19 % protein for a 10-week period. Wool growth rate of BF lambs was 10 % higher than that of DF or F lambs and was increased 9 % by the high-protein diet. While there was no main effect of protozoa treatment on enteric methane production, there was an interaction between protozoa treatment and diet for methane production. BF and DF lambs produced more methane than F lambs when fed the low-protein diet but when fed the high-protein diet, emissions were less than (BF lambs) or not different from (DF lambs) emissions from F lambs. In trial 2, lambs were offered 800 g roughage per d and, again, methane production was not affected by the presence of protozoa in the rumen. The data indicate that while lambs without rumen protozoa have greater protein availability than do faunated ruminants, there is no main effect of rumen protozoa on enteric methane production by lambs fed either a concentrate or roughage diet. Methane: Rumen: Sheep: ProtozoaRecent meta-analysis of the productivity of livestock without enteric ciliate protozoa shows that the performance of protozoa-free animals exhibits an 11 % advantage in live-weight (LW) gain over normal (faunated) livestock (1) . Additionally, enteric production of the greenhouse gas methane has been shown to be reduced by 13-30 % when the rumen is protozoa-free (2,3) , suggesting improved productivity can be achieved with reduced environmental impact through the control of protozoa.Protozoa compete successfully with other rumen microorganisms and can become established in the rumen from a small source of inoculum. Therefore, if the long-term effects of defaunation are to be studied, all protozoa must be completely removed from the rumen. Eradication of rumen protozoa has been achieved by feeding high-grain diets (4) , by dietary additives as well as by oral drenches with surfactants and specific compounds toxic to protozoa (5) . However, these eradication methods also impact on the other populations of microbes in the rumen, so the changes associated with defaunation in these studies cannot be exclusively attributed to the absence of protozoa. An alternative means of obtaining protozoa-free livestock is to prevent stock from acquiring a protozoal population, so no chemical agents are used. This has been achieved by either separating the newborn animal at birth and rearing the young animal in isolation (6) or by breeding from protozoa-free ewes (7) .Both rearing livestock in isolation and protozoal eradication are possible commercial options to produce and maintain protozoa-free st...
Daily methane production and feed intake were measured on 160 adult ewes, which were the progeny of 20 sires and 3 sire types (Merino, dual-purpose and terminal) from a genetically diverse flock. All animals were housed in individual pens and fed a 50/50 mix of chaffed lucerne and oaten hays at 20 g/kg liveweight (LW), with feed refusals measured for at least 10 days before the first of three 22-h measurements in respiration chambers (RC). Feed was withdrawn at 1600 h on the day before each RC test to encourage the ewes to eat the entire ration provided for them in the RC. After the first 1-day RC test, the sheep were returned to their pens for a day, then given a second 1-day RC test, followed by another day in their pens, then a third RC test. After all animals had been tested, they were ranked according to methane emissions adjusted for feed intake in the RC and on the previous day, enabling 10 low and 10 high methane animals to be chosen for repeat measurement. No variation between sires nor consistent effects of LW on feed eaten (%FE, expressed as per cent of feed offered) was evident in the 10 days before the first RC measurement. However, significant differences between sires (equivalent to an estimated heritability of 41%) were identified for %FE during the 2nd and 3rd days of RC testing (2 and 4 days after the initial RC test). The analysis of all data showed that methane emissions in the RC were related to feed intake on the day of testing and the two previous days (all P<0.0005). Before correcting for feed intake on previous days, there was some variation between sires in methane yield, equivalent to an estimated heritability of 9%. Correction for feed intake on the 2 previous days halved the residual variation, allowing other effects to be detected, including effects of LW, twins reared as singles, test batch, RC and test-day effects, but estimated sire variation fell to zero. In order to avoid potential biases, statistical models of methane emissions in the RC need to consider potential confounding factors, such as those identified as significant in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.