h i g h l i g h t sWe developed algorithm for detection and localization of face and eyes in thermal images. The novelty is the modification of the RHT method. The algorithm is highly accurate and fast. The essential parameters of the IR camera were examined before experiments. a b s t r a c tIn this paper, a novel algorithm for the detection and localization of the face and eyes in thermal images is presented, particularly the temperature measurement of the human body by measuring the eye corner (inner canthus) temperature. The algorithm uses a combination of the template-matching, knowledgebased and morphological methods, particularly the modified Randomized Hough Transform (RHT) in the localization process, also growing segmentation to increase accuracy of the localization algorithm. In many solutions, the localization of the face and/or eyes is made by manual selection of the regions of the face and eyes and then the average temperature in the region is measured. The paper also discusses experimental studies and the results, which allowed the evaluation of the effectiveness of the developed algorithm. The standardization of measurement, necessary for proper temperature measurement with the use of infrared thermal imaging, are also presented.
This paper presents a method for human detection using a laser scanner with vision or infrared images. Mobile applications require reliable and efficient methods for human detection, especially as a part of driver assistance systems, including pedestrian collision systems. The authors propose an efficient method for multimodal human detection based on a combination of the features and context information. Strictly, the human is detected in the vision/infrared images using a combination of local binary patterns and histogram of oriented gradients features with a neural network in a cascade manner. Next, using coordinates of detected humans from the vision system, the moving trajectory is predicted until the scanner working distance is reached by the individual human. Then the segmentation of data from the laser scanner is further carried out with respect to the predicted trajectory. Finally, human detection in the laser scanner working distance is performed based on modelling of the human legs. The modelling is based on the adaptive breakpoint detection algorithm and proposed improved polylines definition and fitting algorithm. The authors conducted a set of experiments in predefined scenarios, discussed the identified weakness and advantages of the proposed method, and outlined detailed future work, especially for night-time and low-light conditions.
In this paper, we present our investigation of the 2D Hand Gesture Recognition (HGR) which may be suitable for the control of the Automated Guided Vehicle (AGV). In real conditions, we deal with, among others, a complex background, changing lighting conditions, and different distances of the operator from the AGV. For this reason, in the article, we describe the database of 2D images created during the research. We tested classic algorithms and modified them by us ResNet50 and MobileNetV2 which were retrained partially using the transfer learning approach, as well as proposed a simple and effective Convolutional Neural Network (CNN). As part of our work, we used a closed engineering environment for rapid prototyping of vision algorithms, i.e., Adaptive Vision Studio (AVS), currently Zebra Aurora Vision, as well as an open Python programming environment. In addition, we shortly discuss the results of preliminary work on 3D HGR, which seems to be very promising for future work. The results show that, in our case, from the point of view of implementing the gesture recognition methods in AGVs, better results may be expected for RGB images than grayscale ones. Also using 3D imaging and a depth map may give better results.
The moisture of bulk material has a significant impact on the energetic efficiency of dry grinding, resultant particle size distribution and particle shape, and conditions of powder transport. This research aims to develop computer vision and thermovision techniques for the on-site estimation of moisture content in copper ore, for use, e.g., in dry grinding installations. The influence of particle size on the results of moisture estimation is also studied. The tested granular material was copper ore of particle size 0–2 mm and relative moisture content of 0.5–11%. Both vision and thermovision images were taken at standard and macro scales. The results suggest that median-intensity vision images monotonically reflect copper ore moisture in the range of about 0.5–5%. Suitable models were identified and cross-validated here. In contrary, thermograms should not be analyzed simply for their mean temperature but treated with computer vision processing algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.