The responses of alterations in regional hemodynamics and oxygen transport rate to hematocrit (Hct) were studied in 20 pentobarbitalized dogs. Hemodilution was carried out by isovolemic exchange with plasma in 12 dogs and the hemoconcentration with packed cells in 8 dogs. The cardiac output and regional blood flows were determined with the microsphere technique. In hemodilution, the increases of blood flow to the myocardium and the brain were out of proportion to the increase of cardiac output; the oxygen supply to the myocardium remained unchanged while that to the brain decreased only slightly. In hemoconcentration, vasodilation occurred in the myocardium and the brain to maintain constant oxygen supply. Splenic vessels had marked vasoconstriction with Hct alteration in either direction. Blood vessels in the liver, intestine, and kidney responded with a milder vasoconstriction and maintained a constant oxygen supply between Hct of 30-55%. Therefore, during Hct alteration, redistribution of blood flow to myocardium and brain occurred. The optimal Hct range for constant oxygen supply was different among various organs.
Hemodynamic functions and blood viscosity changes in hypothermia (core approximately 25 degrees C) were studied in 14 pentobarbital-anesthetized dogs subjected to surface cooling. The viscosity of blood (eta B) increased progressively to 173% of that at 37 degrees C when body temperature was lowered to 25 degrees C. The increase in blood viscosity was caused by: a) the direct effect of low temperature on plasma viscosity, b) hemoconcentration as a result of plasma loss, and c) the low-flow (low-shear) state induced by hypothermia. A larger portion of the increased viscosity was caused by the low-flow state in hypothermia. The systemic flow resistance (SFR) increased to 271% of control, and this was attributable about equally to the increases in blood viscosity and systemic vascular hindrance (SFR/eta B). Similarly, the viscosity of blood contributed significantly to raising the pulmonary flow resistance. The relative constancy of mixed venous O2 saturation suggests that the cardiac output at low body temperature is generally adequate to meet the metabolic needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.