Experimental and numerical studies for natural convection in two dimensional regions formed by a constant flux heat horizontal elliptic tube concentrically located in a larger, isothermally cooled horizontal cylinder were investigated. Both ends of the annulus are closed. Experiments were carried out for the Rayleigh number based on the equivalent annulus gap length ranges from 1.12x107 up to 4.92x107; the elliptic tube orientation angle varies from 0o to 90o and the hydraulic radius ratio, HRR, was 6.4. These experiments were carried out for the axis ratio of an elliptic tube (minor/major=b/c) of 1:3. The numerical simulation for the problem is carried out by using commercial CFD code. The effects of the orientation angle as well as other parameters such as elliptic cylinder axis ratio and hydraulic radius ratio on the flow and heat transfer characteristics are investigated numerically. The numerical simulations covered a range of elliptic tube axis ratios from 0.1 to 0.98 and for the hydraulic radius ratios from 1.5 to 6.4. The results showed that the average Nusselt number increases as the orientation angle of the elliptic cylinder increases from 0o (the major axis is horizontal) to 90o (the major axis is vertical) and with the Rayleigh number as well. Also, the average Nusselt number decreases with the increase of the hydraulic radius ratio. An increase up to 1.75 and further increases in the hydraulic radius ratio leads to an increase in the average Nusselt number. The axis ratio of the elliptic cylinder has an insignificant effect on the average Nusselt number. Both the average and local Nusselt number from the experimental results are compared with those obtained from the CFD code.Both the fluid flow and heat transfer characteristics for different operating and geometric conditions are illustrated velocity vectors and isotherm contours that were obtained from the CFD code. Also, two correlation equations that relate the average Nusslet number with the Rayleigh number, orientation angle, and hydraulic radius ratio and axis ratio are obtained.
The present work experimentally investigates the characteristics of convective heat transfer in horizontal shell and coil heat exchangers in addition to friction factor for fully developed flow through the helically coiled tube (HCT). The majority of previous studies were performed on HCTs with isothermal and isoflux boundary conditions or shell and coil heat exchangers with small ranges of HCT configurations and fluid operating conditions. Here, five heat exchangers of counter-flow configuration were constructed with different HCT-curvature ratios (δ) and tested at different mass flow rates and inlet temperatures of the two sides of the heat exchangers. Totally, 295 test runs were performed from which the HCT-side and shell-side heat transfer coefficients were calculated. Results showed that the average Nusselt numbers of the two sides of the heat exchangers and the overall heat transfer coefficients increased by increasing coil curvature ratio. The average increase in the average Nusselt number is of 160.3–80.6% for the HCT side and of 224.3–92.6% for the shell side when δ increases from 0.0392 to 0.1194 within the investigated ranges of different parameters. Also, for the same flow rate in both heat exchanger sides, the effect of coil pitch and number of turns with the same coil torsion and tube length is remarkable on shell average Nusselt number while it is insignificant on HCT-average Nusselt number. In addition, a significant increase of 33.2–7.7% is obtained in the HCT-Fanning friction factor (fc) when δ increases from 0.0392 to 0.1194. Correlations for the average Nusselt numbers for both heat exchanger sides and the HCT Fanning friction factor as a function of the investigated parameters are obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.