We report the study of high-pressure phases of YN and ScN compounds, using a recent version of the full potential linear muffin-tin orbital (FPLMTO) method, which enables an accurate treatment of the interstitial regions. The local density approximation (LDA) was used for the exchange and correlation energy density functional. Calculations are given for lattice parameters, bulk modulus and its first derivatives in different structures. Under compression, we found that ScN transforms from NaCl-type structure (B1) to Beta-Sn-type (A5) at a pressure of around 301.3 GPa, with a direct energy gap at Γ of about 0.108 eV. This transition B1 to A5 takes place at a lower pressure than the well-known transition NaCl-type structure (B1) to CsCl-type structure (B2) (found here to be 412 GPa). Our calculations also show that YN transforms from B1 to B2 at a pressure of around 198.5 GPa.
This paper deals with the theoretical calculation of structural and electronic, properties of AgBr and AgCl compounds using density functional theory within generalized-gradient (GGA) approximation and local density approximation (LDA). We employ the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the Lmtart code. We have used to examine structure parameter in eight different structures such as in NaCl (B1), CsCl (B2), ZB (B3), NiAs (B8), PbO (B10), Wurtzite (B4), HCP (A3) [Formula: see text]Sn (A5) structures. The equilibrium lattice parameter, bulk modulus and its pressure derivative were presented for all calculated phases. The calculated ground state properties are in good agreement with available experimental and theoretical results. A pressure induced structural phase transition from NaCl (B1) to HCP (A3) phases at 37.66 and 18.11[Formula: see text]GPa for AgBr and AgCl, respectively, and from NaCl to CsCl phase in AgBr and AgCl at 90.55 and 24.4[Formula: see text]GPa, respectively, is also predicted. Furthermore, the band structures are computed. Our results are compared to other theoretical and experimental works, and excellent agreement is obtained.
We report the results of first-principles total-energy calculations for structural properties of scandium nitride (ScN) semiconductor compound in NaCl-type (B1), CsCl-type (B2), zincblende-type (B3), wurtzite-type (B4), NiAs-type (B81), CaSi-type (Bc), B-Sn-type (A5), and CuAu-type (L10) structures. Calculations have been performed with the use of the all-electron full-potential linearized augmented plane wave FP-LAPW method based on density-functional theory (DFT) in the generalized gradient approximation (GGA) for the exchange correlation energy functional. We predict a new phase transition from the most stable cubic NaCl-type structure (B1) to the B-Sn-type one (A5) at 286.82 GPa with a direct band-gap energy of about 1.975 eV. Our calculations show that ScN transforms from the orthorhombic CaSi-type structure (Bc) to A5 at 315 GPa. In agreement with earlier ab initio works, we find that B1 phase transforms to Bc, L10, and B2 structures at 256.27 GPa, 302.08 GPa, and 325.97 GPa, respectively. The electronic structure of A5 phase shows that ScN exhibits a direct band-gap at X point, with Eg of about 1.975 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.