In this work, sulfur addition has been employed on the boron-doped diamond growth process, and a significant regulation of the boron doping and the growth behavior has been realized by microwave plasma chemical vapor deposition. It is interesting to find that the sulfur incorporation will lead to an accordant evolution on the boron doping efficiency, hole mobility and concentration, crystal quality, surface morphology, and growth rate. In the presence of sulfur with appropriate dosage, for a boron-to-carbon ratio of only 2.5 ppm in gas phase during growth, a very high doping concentration of 1.2 × 1019 at/cm3 has been achieved, indicative of a very efficient boron doping. Besides, the hole mobility of the sample is 853 cm2/V s at 300 K, which is better than the state of the art for p-type doping in diamond. The regulation mechanism of the sulfur addition will be discussed from the point of view of sulfur-induced plasma change and possible B–S complex formation. This study may provide an effective way for high-quality p-type conductive diamond layer growth and further for the potential diamond-based opto-electronic device applications.
The n-type doping of diamond is quite difficult, hindering the development of diamond-based electronic devices for decades. In this work, we have designed a boron–nitrogen co-doping technique to realize n-type diamonds. Basically, the activation energy of the donors has been greatly reduced by around 50%, thanks to the successful synthesis of the boron–nitrogen related donor-like complex by a fine control of the synthesis condition. Compared to the sole nitrogen doping scheme, it is found that the co-incorporation of boron elements is beneficial to a lot of aspects, including better crystalline quality, faster growth, higher nitrogen solubility, and stability. With the technique, a p-i-n diamond homojunction has been fabricated. A clear rectification behavior has been recorded, demonstrating that the current co-doping technique we proposed is a feasible path to the accessible n-type diamond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.