Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of N(ω)-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.
The associations of serum arginase I with serum L-arginine, serum 3-nitrotyrosine, and fractional exhaled nitric oxide (FENO) were evaluated cross-sectionally in healthy Japanese workers. The serum median (minimum-maximum) levels of arginase I, 3-nitrotyrosine, and FENO in healthy people (n = 130) were 14.6 (0.94-108.1) ng/mL, 81.0 (0.27-298.6) pmol/mg protein, and 14.0 (5.0-110.0) parts per billion, respectively. Significant correlations of arginase I with FENO, L-arginine, 3-nitrotyrosine, and percent predicted forced expiratory volume in 1 s (FEV1 (% predicted)) were observed, and correlations of FENO with immunoglobulin E (IgE), NOx, arginase I, and sex and allergy were also observed. By multiple regression analysis, arginase I showed positive associations with FENO and 3-nitrotyrosine, and a negative association with L-arginine; and FENO showed positive associations with IgE and NO2(-) + NO3(-) (NOx), and a negative association with L-arginine, as well as an association with sex. Moreover, logistic regression analysis showed linear inverse associations of arginase I and 3-nitrotyrosine with L-arginine, and showed linear positive associations of FENO with IgE and NOx. It was concluded that serum arginase I might regulate serum L-arginine and 3-nitrotyrosine via L-arginine, and that IgE or NOx might regulate FENO in a healthy Japanese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.