The main purpose of this paper is to predict analytically the concrete basic creep time-dependent deformation according to its composition and microstructure. Thus, concrete was modelled as a three-phase composite formed by aggregates surrounded by interfacial transition zones (ITZs) and embedded randomly in a hardened cement paste. First, the ITZ phase volume fraction within concrete was evaluated using an analytical formula that the authors had recently proposed (Zouaoui et al. 2017). Then, the specific basic creep deformation of concrete was evaluated analytically based on a four-sphere homogenization model where cement paste and ITZ have a linear viscoelastic behaviour whereas aggregates are assumed linear elastic. The predictions of the proposed model show that cement paste basic creep and aggregates volume fraction and maximum packing density are the main parameters governing concrete basic creep. Moreover, these predictions show that aggregates gradation and ITZ thickness have secondary effects on concrete basic creep. Finally, the relevance and the validity of the proposed model have been discussed based on a comparison between its predictions and experimental results taken from literature and related to both normal and high-strength concretes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.