Understanding the genomic basis of inherited respiratory disorders can assist in the clinical management of individuals with these rare disorders. We apply whole genome sequencing for the discovery of disease-causing variants in the non-coding regions of known disease genes for two individuals with inherited respiratory disorders. We describe analysis strategies to pinpoint candidate non-coding variants within the non-coding genome and demonstrate aberrant RNA splicing as a result of deep intronic variants in DNAH11 and CFTR. These findings confirm clinical diagnoses of primary ciliary dyskinesia and cystic fibrosis, respectively.
have shown neutrophil migratory accuracy to be reduced in COPD. This is thought to contribute to the destruction of lung parenchyma and the poor responses seen in infective exacerbations. We aimed to characterise neutrophil migration in COPD and assess whether physiologically relevant concentrations of simvastatin altered neutrophil migration. Methods Neutrophils were isolated from COPD patients and healthy smoking age-matched controls (age > 60yrs, n = 13 per group) and incubated with 1nM -1µM Simvastatin or with a carrier control before migratory dynamics were assessed towards IL8 and fMLP using time-lapse photography. Data is expressed as means with standard deviation in parentheses. Results COPD neutrophils displayed reduced chemotaxis (directional speed of migration) and reduced chemotactic accuracy (Chemotactic Index -a vector analysis of migratory tracks) compared to cells from healthy age-matched controls (HC) in the presence of IL-8 and f-MLP, replicating previous work. For example, Chemotactic Index: IL8; HC, 0.42CU (0.03), COPD 0.22CU (0.05), p = 0.002: fMLP; HC, 0.34CU (0.05), COPD, 0.18CU (0.03) p = 0.014).Treatment with Simvastatin significantly improved the chemotactic ability of COPD neutrophils in a dose response with greatest improvement seen at the highest concentration (e.g. Chemotaxis to IL8, Carrier control 0.8um/min (0.2), 1nM Simvastatin 1.3um/min (0.2), p = 0.04; 1uM Simvastatin 1.4um/min (0.2), p = 0.004). A similar improvement was seen in Chemotactic Accuracy (e.g. Chemotactic Index to fMLP, Carrier control 0.17CU (0.03), 1nM Simvastatin 0.26CU (0.02), p = 0.018; 1uM Simvastatin 0.31CU (0.03), p = 0.002). Conclusions Migratory accuracy of circulating neutrophils is reduced in COPD patients compared with healthy, smoking, agematched controls but can be restored by treatment with therapeutic concentrations of Simvastatin in vitro. Our data suggest statin therapy might be an adjuvant intervention in COPD, modulating neutrophil responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.