Phosphopeptide/protein identification using tandem mass spectrometry (MS/MS) is a challenging issue in proteomics research. In particular, phosphopeptides typically exhibit low intensity peaks of b and y ions in spectra when serine or threonine is phosphorylated. Consequently, the existing algorithms for peptide and protein identification generate a high false discovery rate when coping with phosphopeptide spectra. In order to increase the number of correct phosphopeptide identifications using database search, a new data mining approach for spectra preprocessing is proposed. A support vector machine classifier is used to calculate the probability of each peak representing a b or y ion. Next, low-probability peaks are removed from spectra, while remaining peaks have their intensities enhanced. As a result, a huge increase in signal-to-noise ratio is provided and the chances of detecting important peaks are significantly advanced. Experiments using MASCOT and SEQUEST along with Peptide/ProteinProphet and a decoy database approach showed a significant improvement in the sensitivity of phosphopeptide identification without compromising specificity, demonstrating that our new strategy for MS/MS spectra preprocessing is a powerful proteomics tool for enhancing phosphopeptide identifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.