Domain Generation Algorithms (DGAs) are a popular technique used by contemporary malware for commandand-control (C&C) purposes. Such malware utilizes DGAs to create a set of domain names that, when resolved, provide information necessary to establish a link to a C&C server. Automated discovery of such domain names in real-time DNS traffic is critical for network security as it allows to detect infection, and, in some cases, take countermeasures to disrupt the communication and identify infected machines. Detection of the specific DGA malware family provides the administrator valuable information about the kind of infection and steps that need to be taken. In this paper we compare and evaluate machine learning methods that classify domain names as benign or DGA, and label the latter according to their malware family. Unlike previous work, we select data for test and training sets according to observation time and known seeds. This allows us to assess the robustness of the trained classifiers for detecting domains generated by the same families at a different time or when seeds change. Our study includes tree ensemble models based on human-engineered features and deep neural networks that learn features automatically from domain names. We find that all state-of-the-art classifiers are significantly better at catching domain names from malware families with a time-dependent seed compared to time-invariant DGAs. In addition, when applying the trained classifiers on a day of real traffic, we find that many domain names unjustifiably are flagged as malicious, thereby revealing the shortcomings of relying on a standard whitelist for training a production grade DGA detection system.
Domain generation algorithms (DGAs) are commonly leveraged by malware to create lists of domain names which can be used for command and control (C&C) purposes. Approaches based on machine learning have recently been developed to automatically detect generated domain names in real-time. In this work, we present a novel DGA called CharBot which is capable of producing large numbers of unregistered domain names that are not detected by state-of-the-art classifiers for real-time detection of DGAs, including the recently published methods FANCI (a random forest based on human-engineered features) and LSTM.MI (a deep learning approach). CharBot is very simple, effective and requires no knowledge of the targeted DGA classifiers. We show that retraining the classifiers on CharBot samples is not a viable defense strategy. We believe these findings show that DGA classifiers are inherently vulnerable to adversarial attacks if they rely only on the domain name string to make a decision. Designing a robust DGA classifier may, therefore, necessitate the use of additional information besides the domain name alone. To the best of our knowledge, CharBot is the simplest and most efficient black-box adversarial attack against DGA classifiers proposed to date.
Malware applications typically use a command and control (C&C) server to manage bots to perform malicious activities. Domain Generation Algorithms (DGAs) are popular methods for generating pseudo-random domain names that can be used to establish a communication between an infected bot and the C&C server. In recent years, machine learning based systems have been widely used to detect DGAs. There are several well known state-of-the-art classifiers in the literature that can detect DGA domain names in real-time applications with high predictive performance. However, these DGA classifiers are highly vulnerable to adversarial attacks in which adversaries purposely craft domain names to evade DGA detection classifiers. In our work, we focus on hardening DGA classifiers against adversarial attacks. To this end, we train and evaluate stateof-the-art deep learning and random forest (RF) classifiers for DGA detection using side information that is harder for adversaries to manipulate than the domain name itself. Additionally, the side information features are selected such that they are easily obtainable in practice to perform inline DGA detection. The performance and robustness of these models is assessed by exposing them to one day of real-traffic data as well as domains generated by adversarial attack algorithms. We found that the DGA classifiers that rely on both the domain name and side information have high performance and are more robust against adversaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.