Switchbacks are localized deviations from the nominal Parker spiral field in the solar wind. In this study, we investigate the electron distributions inside switchbacks, focusing primarily on the suprathermal (halo and strahl) populations. We explore electron parameters in relation to the angle of rotation of the magnetic field from radial to determine whether electron distributions observed within switchbacks have any differences from those outside of switchbacks. Our observations reveal several trends in the suprathermal electron populations inside switchbacks. We find that the sunward deficit in the electron velocity distribution function typically observed near the Sun is filled in at larger rotation angles. This results in the suprathermal electron density and heat flux in the antistrahl direction changing from a negative to a positive value. On many days, we also observe a positive correlation between the halo density and rotation angle, and this may suggest that the growth of the halo may fill in the sunward deficit. We also find that strahl distributions have an increased average angular spread at large magnetic field rotation angles. The increase in suprathermal electron flux in the antistrahl direction, and the increase in strahl width, together could suggest that enhanced scattering occurs inside switchbacks. Electron core beta values tend to increase with the magnetic field rotation angle, mainly due to a decrease in magnetic pressure. An increase in electron beta may favor the growth of instabilities inside switchbacks. The Parker Solar Probe observations therefore support an enhanced role for wave–particle interactions in switchbacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.