BackgroundResidual renal function (RRF) confers survival in patients with ESRD but declines after initiating hemodialysis. Previous research shows that dialysate cooling reduces hemodialysis-induced circulatory stress and protects the brain and heart from ischemic injury. Whether hemodialysis-induced circulatory stress affects renal perfusion, and if it can be ameliorated with dialysate cooling to potentially reduce RRF loss, is unknown.MethodsWe used renal computed tomography perfusion imaging to scan 29 patients undergoing continuous dialysis under standard (36.5°C dialysate temperature) conditions; we also scanned another 15 patients under both standard and cooled (35.0°C) conditions. Imaging was performed immediately before, 3 hours into, and 15 minutes after hemodialysis sessions. We used perfusion maps to quantify renal perfusion. To provide a reference to another organ vulnerable to hemodialysis-induced ischemic injury, we also used echocardiography to assess intradialytic myocardial stunning.ResultsDuring standard hemodialysis, renal perfusion decreased 18.4% (P<0.005) and correlated with myocardial injury (r=−0.33; P<0.05). During sessions with dialysis cooling, patients experienced a 10.6% decrease in perfusion (not significantly different from the decline with standard hemodialysis), and ten of the 15 patients showed improved or no effect on myocardial stunning.ConclusionsThis study shows an acute decrease in renal perfusion during hemodialysis, a first step toward pathophysiologic characterization of hemodialysis-mediated RRF decline. Dialysate cooling ameliorated this decline but this effect did not reach statistical significance. Further study is needed to explore the potential of dialysate cooling as a therapeutic approach to slow RRF decline.
Introduction:The liver receives gut-derived endotoxin via the portal vein, clearing it before it enters systemic circulation. Hemodialysis negatively impacts the perfusion and function of multiple organs systems. Dialysate cooling reduces hemodialysis-induced circulatory stress and protects organs from ischemic injury. This study examined how hemodialysis disrupts liver hemodynamics and function, its effect on endotoxemia, and the potential protective effect of dialysate cooling.Methods: Fifteen patients were randomized to receive either standard (36.5 C dialysate temperature) or cooled (35.0 C) hemodialysis first in a two-visit crossover trial. We applied computed tomography (CT) liver perfusion imaging to patients before, 3 hours into and after each hemodialysis session. We measured hepatic perfusion and perfusion heterogeneity. Hepatic function was measured by indocyanine green (ICG) clearance. Endotoxin levels in blood throughout dialysis were also measured.Results: During hemodialysis, overall liver perfusion did not significantly change, but portal vein perfusion trended towards increasing (P ¼ 0.14) and perfusion heterogeneity significantly increased (P ¼ 0.038). In addition, ICG clearance decreased significantly during hemodialysis (P ¼ 0.016), and endotoxin levels trended towards increasing during hemodialysis (P ¼ 0.15) and increased significantly after hemodialysis (P ¼ 0.037). Applying dialysate cooling trended towards abrogating these changes but did not reach statistical significance compared to standard hemodialysis. Conclusion:Hemodialysis redistributes liver perfusion, attenuates hepatic function, and results in endotoxemia. Higher endotoxin levels in end-stage renal disease (ESRD) patients may result from the combination of decreased hepatic clearance function and increasing fraction of liver perfusion coming from toxin-laden portal vein during hemodialysis. The protective potential of dialysate cooling should be explored further in future research studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.