Biosynthesis of silver nanoparticles (AgNPs) is emerging as a simple and eco-friendly alternative to conventional chemical synthesis methods. The role of AgNPs is expanding as antimicrobial and anticancer agents, sensors, nanoelectronic devices, and imaging contrast agents. In this study, biogenic AgNPs were synthesized using extracts of different marine algae species, including Ulva rigida (green alga), Cystoseira myrica (brown alga), and Gracilaria foliifera (red alga), as reducing and capping agents. The Physiochemical properties, cytotoxicity, anticancer and antimicrobial activities of the biosynthesized AgNPs were assessed. Surface plasmonic bands of the biosynthesized AgNPs capped with U. rigida, C. myrica, and G. foliifera extracts were visually observed to determine a colour change, and their peaks were observed at 424 nm, 409 nm, and 415 nm, respectively, by UV–Vis spectroscopy; transmission electron microscopy (TEM) indicated an almost spherical shape of AgNPs with nanoscale sizes of 12 nm, 17 nm, and 24 nm, respectively. Fourier transform-infrared (FTIR) spectroscopy analysis suggested that different molecules attached to AgNPs through OH, C=O, and amide groups. The major constituents of the aqueous algal extracts included, terpenoids, polyphenols, sulfonates, polysaccharides, fatty acids, chlorophylls, amide proteins, flavonoids, carotenoids, aliphatic fluoro compounds, volatile compounds, alkalines, pyruvic acid and agar groups. The cytotoxicity and anticancer activities of the biosynthesized AgNPs were assessed using Artemia salina nauplii, normal skin cell lines (HFb-4), and breast cancer cell lines (MCF-7 cell line). The lethality was found to be directly proportional to the AgNP concentration. The IC50 values of C. myrica and G. foliifera AgNPs against A. saline nauplii were 5 and 10 μg ml−1 after 4 h and 16 h, respectively, whereas U. rigida AgNPs did not exhibit cytotoxic effects. Anticancer activity of the biosynthesized AgNPs was dose dependent. The IC50 values of the biosynthesized AgNPs were 13, 13, and 43 µg ml−1 for U. rigida, C. myrica, and G. foliifera, respectively. U. rigida AgNPs particularly exhibited potent anticancer activity (92.62%) against a human breast adenocarcinoma cell line (MCF-7) with high selectivity compared the normal cells (IC50 = 13 µg/ml, SI = 3.2), followed by C. myrica AgNPs (IC50 = 13 µg/ml, SI = 3.07). Furthermore, the biosynthesized AgNPs exhibited strong antifungal activity against dermatophyte pathogenic moulds and mild antibacterial activity against the food borne pathogen bacteria. The highest antimicrobial activity was recorded for the U. rigida AgNPs, followed by those capped with C. myrica and G. foliifera extracts, respectively. AgNPs capped with the U. rigida extract exhibited the highest antimicrobial activity against Trichophyton mantigrophytes (40 mm), followed by Trichosporon cataneum (30 mm) and E. coli (19 mm), with minimal lethal concentration of 32 and 64 μg ml−1 respectively. The study finally revealed that extracts of marine algal species, particularly U. rigida extracts, could be effectively used as reducing agents for the green synthesis of AgNPs. These AgNPs are considered efficient alternative antidermatophytes for skin infections and anticancer agents against the MCF-7 cell line.
Biosynthesis of gold nanoparticles (AuNPs) is emerging as a better alternative to traditional chemical-based techniques. During this study, extracts of different marine algae species Ulva rigida (green algae), Cystoseira myrica (brown Algae), and Gracilaria foliifera (red Algae) were utilized as reducing and capping agents to synthesize AuNPs. AuNPs capped by U. rigida, C. myrica, and G. foliifera were confirmed by the appearance of surface plasmonic bands at 528, 540, and 543 nm, respectively. Transmission electron microscopy revealed mostly spherical shapes of AuNPs having a size of about 9 nm, 11 nm, and 13 nm for C. myrica, and G. foliifera extracts, respectively. Fourier transform-infrared spectroscopy (FTIR) illustrated the major chemical constituents of U. rigida, C. myrica, and G. foliifera. LC50 values of the biosynthesized AuNPs against Artemia salina nauplii were calculated at a range of concentrations (5-188 μg ml−1) after 16 to 24h. AuNPs concentration-dependent lethality was noted and U. rigida extracts-mediated AuNPs presented the lowest cytotoxicity. The biosynthesized AuNPs exhibited significant anticancer activity (86.83%) against MCF-7 cell lines (human breast adenocarcinoma cell lines) at 188 µg/ml concentration. G. foliifera demonstrated the highest anticancer value (92.13%) followed by C. myrica (89.82%), and U. rigida (86.83%), respectively. The AuNPs synthesized by different algal extracts showed variable antimicrobial activity against the tested pathogenic microorganisms. AuNPs of U. rigida extracts showed significant antimicrobial activity against dermatophytic fungi Trichosporon cataneum (30 mm) followed by Trichophyton mantigrophytes (25 mm). Furthermore, it also exhibited mild activity against Escherichia coli (17 mm), Cryptococcus neoformans (15 mm), Candida albicans (13 mm), and Staphylococcus aureus (11mm), respectively whereas no effects were observed against Bacillus cereus. To conclude, AuNPs can be effectively synthesized by marine algal species, and particularly U. rigida extracts could be effective reducing agents for the green AuNPs synthesis. These AuNPs could potentially serve as efficient alternative anticancer agents against human breast adenocarcinoma and anti-dermatophytes associated with skin infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.