In the present work, an indirect adaptive neural control method for nonlinear systems having unknown dynamics is proposed. The proposed control architecture is composed by a neural emulator (NE) and a neural controller (NC) where a new decoupled variable learning rates (VLRs) combined with Taylor development (TD) are used to train the NE and the NC. The developed VLRs mixed with the TD (TDVLRs) ensure a quick adaptation of neural networks parameters guaranteeing a faster output convergence and reducing the tracking error. The effectiveness of the proposed TDVLRs is illustrated by simulation with a nonlinear dynamic system. In order to validate simulation results, an application on a transesterification reactors is, also, presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.