In this paper, we prove the existence of solutions for a boundary value problem involving both left Riemann-Liouville and right Caputo-type fractional derivatives. For this, we convert the posed problem to a sum of two integral operators, then we apply Krasnoselskii's fixed point theorem to conclude the existence of nontrivial solutions.
We derive a new Lyapunov type inequality for a boundary value problem involving both left Riemann-Liouville and right Caputo fractional derivatives in presence of natural conditions. Application to the corresponding eigenvalue problem is also discussed.
We consider a boundary value problem involving conformable derivative of order α, 1 < α < 2 and Dirichlet conditions. To prove the existence of solutions, we apply the method of upper and lower solutions together with Schauder's fixed-point theorem. Futhermore, we give the Lyapunov inequality for the corresponding problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.