Multi-effect distillation with thermal vapor compression (MED-TVC) is a highly energy-efficient desalination technology that can provide a reliable and sustainable source of high-quality water, particularly in areas with limited energy infrastructure and water resources. In this study, a numerical model based on exergoeconomic approach is developed to analyze the economic performance of a MED-TVC system for seawater desalination. A parallel/cross feed configuration is considered because of its high energy efficiency. In addition, a parametric study is performed to evaluate the effects of some operational parameters on the total water price, such as the top brine temperature, seawater temperature, motive steam flow rate, and number of effects. The obtained results indicate that the total water price is in the range of 1.73 USD/m3 for a distilled water production of 55.20 kg/s. Furthermore, the exergy destructions in the effects account for 45.8% of the total exergy destruction. The MED effects are also identified to be the most relevant component from an exergoeconomic viewpoint. Careful attention should be paid to these components. Of the total cost associated with the effects, 75.1% is due to its high thermodynamic inefficiency. Finally, the parametric study indicates that adjusting the top brine temperature, the cooling seawater temperature, the motive steam flow rate, and the number of effects has a significant impact on the TWP, which varies between 1.42 USD/m3 and 2.85 USD/m3.
Electricity–water cogeneration power plants are an important tool for advancing sustainable water treatment technologies because they provide a cost-effective and environmentally friendly solution for meeting the energy and water needs of communities. By integrating power and water production, these technologies can reduce carbon emissions and help mitigate the impact of climate change. This work deals with the energy and exergy analysis of a cogeneration plant for electrical power generation and water desalination using real operational data. The power side is a pressurized water reactor (PWR) nuclear power plant (NPP), while the desalination side is a multi-effect distillation (MED) system with a thermo-vapor compressor (TVC) plant coupled with a conventional multi-effect plant (ME-TVC-MED). A mathematical model was implemented in MATLAB software and validated through a comparison with previously published research. The exergy analysis was carried out based on the second law of thermodynamics to evaluate the irreversibility of the plant and the subsystems. In this study, the components of the sub-systems were analyzed separately to identify and quantify the component that has a high loss of energy and exergy. According to the energy and exergy analyses, the highest source of irreversibility occurs in the reactor core with 50% of the total exergy destruction. However, turbines, steam generators, and condensers also contribute to energy loss. Further, the thermodynamic efficiency of the cogeneration plant was obtained as 35.38%, which is more effective than other systems. In the ME-TVC-MED desalination unit, the main sources of energy losses are located in the evaporators and the thermo-compressor (about 50% and 36%, respectively). Moreover, the exergetic efficiency of the ME-TVC-MED unit was found to be low at 6.43%, indicating a high degree of technical inefficiency in the desalination process. Therefore, many opportunities exist to improve the performance of the cogeneration system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.