The chemical composition of plants (phytometabolome) is dynamic and modified by environmental factors. Understanding its modulation allows to improve crop quality and decode mechanisms underlying plant-pest interactions. Many studies that investigate metabolic responses to the environment focus on single model species and/or few target metabolites. However, comparative studies using environmental metabolomics are needed to evaluate commonalities of chemical responses to certain challenges. We assessed the specificity of foliar metabolic responses of five plant species to the widespread, ancient symbiosis with a generalist arbuscular mycorrhizal fungus. Here we show that plant species share a large 'core metabolome' but nevertheless the phytometabolomes are modulated highly species/taxon-specifically. Such a low conservation of responses across species highlights the importance to consider plant metabolic prerequisites and the long time of specific plant-fungus coevolution. Thus, the transferability of findings regarding phytometabolome modulation by an identical AM symbiont is severely limited even between closely related species.
The relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.
The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species.
Phloem sap quality can differ between and within plants, and affect the performance of aphids. In turn, aphid infestation may change the chemical composition and nutritional value of phloem sap. However, the effects of different aphid species on the overall phloem sap composition of distinct parts within plant individuals in relation to aphid performance remain unclear. To test the specificity of plant responses to aphids, we used two chemotypes of Tanacetum vulgare plants and placed the monophagous aphids Macrosiphoniella tanacetaria and Uroleucon tanaceti on different plant parts (stems close to the inflorescence, young and old leaves). Aphid population growth was determined and sugars, organic acids, amino acids and metabolic fingerprints of phloem exudates were analysed. Macrosiphoniella tanacetaria performed best on stems, whereas U. tanaceti performed best on old leaves, indicating differences in niche conformance. Aphid infestation led to distinct changes in the phloem exudate composition of distinct metabolite classes, differing particularly between plant parts but less between chemotypes. In summary, plant responses to aphids are highly specific for the chemotype, plant part, metabolite class and aphid species. These changes may indicate that aphids construct their own niche, optimizing the food quality on the plant parts they prefer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.