Growing political pressure and widespread social concerns about climate change are triggering a paradigm shift in the aviation sector. Projects with the target of reducing aviation’s CO2 emissions and their impact on climate change are being launched to improve currently used procedures. In this paper, a new coordination process between aircraft flight management systems (FMSs) and an arrival manager (AMAN) was investigated to enable fuel-efficient and more sustainable approaches. This coordination posed two major challenges. Firstly, current capacity-centred AMANs’ planning processes are not optimised towards fuel-efficient trajectories. To investigate the benefit of negotiated trajectories with fixed target times for waypoints and thresholds, the terminal manoeuvring area was redesigned for an independent parallel runway system. Secondly, the FMS-AMAN negotiation process plan the trajectories based on time, whereas air traffic controllers guide traffic based on distance. Three tactical assisting tools were implemented in an air traffic controller’s working position to enable a smooth transition from distance-based to time-based coordination and guidance. The whole concept was implemented and tested in real-time human-in-the-loop studies at DLR’s Air Traffic Validation Center. Results showed that the new airspace design and concept was feasible, and a reduction in flown distance was measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.