Nowadays, the diseases of the voice increase because of bad social habits and the misuse of voice. These pathologies should be treated from the beginning. Indeed, it is no longer necessary that the diseases of the voice lead to affect the quality of the voice as heard by a listener. The most useful tool for diagnosing such diseases is the Acoustic analysis. We present in this work, new expression parameters in order to clarify the description of the vocal signal. These parameters help to classify the unhealthy voices. They describe essentially the fundamental frequency F0, the Harmonics-to-Noise report (HNR), the report Noise to Harmonics Ratio (NHR) and Detrended Fluctuation Analysis (DFA). The classification is performed on two Saarbruecken Voice and MEEI pathological databases using HTK classifiers. We can classify them into two different types: the first classification is binary which is used for the normal and pathological voices; the second one is called a four-category classification used in spasmodic, polyp, nodule and normal female voices and male speakers. And we studied the effects of these new parameters when combined with the MFCC, Delta, Delta second and Energy coefficients.
Human speech is a means of communication that is very important in our daily lives. It is characterized by its great ability to transmit our ideas, our emotions, our personality etc. So, any alteration of the voice can prevent the person from exercising his professional and daily life naturally. It is for these reasons that it is very necessary to implement systems for detecting and classifying vocal pathologies. These automatic systems can help clinicians customize and detect the existence of any vocal pathology. In this context, several tools have been introduced to achieve early detection of voice disorders. Among these tools are the Human Factor Cepstral Coefficients (HFCC) combined with prosodic parameters, the Noise-Harmonic Ratio (NHR), the Harmonic-Noise Ratio (HNR), analysis of trend Fluctuations (DFA) and Fundamental frequency (F0). These parameters are introduced and calculated in every frame. In this study, we used a variation of HFCC called Equivalent Rectangular Bandwidth (ERB) to study the effects of HFCC on the classification of pathological voices. Using the HTK classifiers, the classification is carried out on two pathological databases, Massachusetts Eye and Ear Infirmary (MEEI) and Saarbruecken Voice Database (SVD). To assess the performance of the system, we used sensitivity and specificity.
Several tools have been introduced to achieve early detection of voice disorders. Among these tools are the human factor cepstral coefficients HFCC combined with prosodic parameters, the noise-harmonic ratio (NHR), the harmonic-noise ratio (HNR), analysis of trend fluctuations (DFA) and fundamental frequency (F0). These parameters are introduced and calculated in every frame. In this work, we used a variation of HFCC called equivalent rectangular bandwidth (ERB) to study the effects of HFCC on the classification of pathological voices. Using the HTK classifiers, the classification is carried out on two pathological databases, Massachusetts Eye and Ear Infirmary (MEEI) and Saarbruecken Voice Database (SVD). To assess the performance of the system, we used sensitivity and specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.