Abstract-Deep learning system is used for solving many problems in different domains but it gives an over-fitting risk when richer representations are increased. In this paper, three different models with different deep multiple kernel learning architectures are proposed and evaluated for the breast cancer classification problem. Discrete Wavelet transform and edge histogram descriptor are used to extract the image features. For image classification purpose, support vector machine with the proposed deep multiple kernel models are used. Also, the span bound is employed for optimizing these models over the dual objective function. Furthermore, the comparison between the performance of the traditional support vector machine which uses only single kernel and the introduced models is worked out that show the efficiency of the experimental results of the proposed models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.