Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-α catalytic subunit (PIK3CA) 1. They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the PIK3CA mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered an inducible bitransgenic mouse model that develops lung adenocarcinomas initiated and maintained by expression of p110-α H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan PI3K/mTOR inhibitor in clinical development, led to marked tumor regression as shown by PET-CT, MRI and microscopic examination. In contrast, mouse lung cancers driven by mutant K-Ras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a MEK inhibitor, ARRY-142886, there was dramatic synergy in shrinking these K-Ras mutant cancers. These in vivo studies suggest that inhibitors of the PI3K/mTOR pathway may be active in cancers with PIK3CA mutations, and, when combined with MEK inhibitors, may effectively treat K-RAS mutated lung cancers.
Glowing tags: A series of activatable (“turn‐on”) tetrazine‐conjugated fluorescent probes was developed, which react rapidly in an inverse‐electron‐demand [4+2] cycloaddition with strained dienophiles such as trans‐cyclooctene, thereby strongly increasing the fluorescence intensity (see picture). The novel turn‐on probes were applied for intracellular live‐cell imaging of a microtubuli‐binding trans‐cyclooctene modified taxol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.